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Introduction

Introduction

Dataset: Ultrasound Nerve Segmentation contain 5635 training and
5508 testing grayscale image. The size of the image is (580, 420).

Goal: Automatically segment Brachial Plexus (BP) nerve structures
in ultrasound images of the neck.

BP Image Mask
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Introduction

Metrics

Dice Similarity Coefficient (DSC)

Let TP be the true positive, FP be the false positive and FN be the false
negative. The DSC is defined as

DSC =
2TP

2TP + FP + FN
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Introduction

Data Explore

Number of training masks with and without BP are 2323 and 3185,
respectively, which caused data imbalanced.

The box plot shows the pixels count in the mask with BP. The
minimum value is 2684.
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Introduction

The Difficulties

Brachial Plexus does not exist in a most masks (58.8%).

Annotators were trained by experts.

Identical images but different masks.

Similar images Same images
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Approach

Approach

We will introduce the following approach:

Data Pre-processing

Erosion Mask Smoothing

Model Architecture

Segmentation Loss

Adaptive Single Model Ensemble

J.-W., K.-T., Y.-C. (OPML) VRDL Final Project (Team 25) January 6, 2022 6 / 21



Approach

Data Pre-processing

Data Cleansing

Splitting training and validation sets in 4:1

Resize the image from (580,420) to (576,448)

Randomly flips

Randomly adjust brightness

Randomly add noise
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Approach

Erosion Mask Smoothing (EMS)

Let M be the mask, E be the interior region after eroding mask, and p be
the pixel in the mask.

M̃(p) =


1 − ε, if p ∈ E
1, if p ∈ M\ E
0, if p ∈ Mc

Origin EMS
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Approach

Model Architecture

In this task, we choose UNet as our model architecture.
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Approach

Model Architecture

Any backbone with downsampling
steps can be treated as an encoder.

Use a pretrained backbone in order
to get a better result. (e.g. ResNet,
EfficientNet, ec.)

Treat the last stage of the backbone
as the Bridge.
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Approach

Model Architecture

Follow the original UNet
architecture except replacing
”Up-convolution” by ”nearest
interpolation”.

Each decoder stage:
Interpolation+concatenation+(Conv+ReLU)*2

Apply 1x1 convolution layer in the
final to predict the class.
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Approach

Model Architecture

Therefore, the model architecture looks like
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Approach

Segmentation Loss

Dice Loss: Focused on object region

LDSC(Ŷ, Y) = 1 − 2|Y ∩ Ŷ|
|Y|+ |Ŷ|

,

Focal Loss: Adjusted the probability distribution of prediction

LFL(Ŷ, Y) = −∑
i,j

α
(
1 − Ŷi,j,C

)γ
log Ŷi,j,C

Segmentation Loss:

LSeg(Ŷ, Y) = LDSC(Ŷ, Y) + LFL(Ŷ, Y)
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Approach

Adaptive Single Model Ensemble

Let Tk be the transforms, I be the image, and f is segmentation model.

Step 1: Predicted {I, T1(I), T2(I), T3(I)}. Then we have

{ f (I), f (T1(I)), f (T2(I)), f (T3(I))}

Step 2: Compute the dice adjacency matrix

DSC Origin Fliplr (T1) Flipud (T2) Fliplr+ud (T3)
Origin 1 0 0.52 0.79
Fliplr (T1) 0 1 0 0
Flipud (T2) 0.52 0 1 0.65
Fliplr+ud (T3) 0.79 0 0.65 1
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Approach

Adaptive Single Model Ensemble

DSC Origin Fliplr (T1) Flipud (T2) Fliplr+ud (T3)
Origin 1 0 0.52 0.79
Fliplr (T1) 0 1 0 0
Flipud (T2) 0.52 0 1 0.65
Fliplr+ud (T3) 0.79 0 0.65 1

Step 3: Solving the eigenvector of A w.r.t the largest eigenvalue

v = [0.5810 0 0.5341 0.6141]⊤

Step 4: take v to the softmax

[c0, c1, c2, c3]
⊤ = [0.3291 0.0227 0.2651 0.3831]⊤

Step 5: Weighted sum

Ŷ = c0 f (I) +
3

∑
k=1

ck(T−1 ◦ f ◦ T)(I)
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Experience

Experiment Result

EfficientNet-b1

EfficientNet-b1+EMS
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Experience

Experiment Result

The following table shows model scores with different backbone.

Model Backbone Validation Test public Test private

UNet ResNet34 0.67643 0.68530 0.69100

UNet ResNet50 0.66040 0.67340 0.67828

UNet ResNeXt50 0.67162 0.66699 0.66704

UNet ResNeSt26d 0.71936 0.67015 0.69009

UNet RegNet32 0.71839 0.67906 0.68959

UNet EfficientNet-b0 0.70170 0.68135 0.69254

UNet EfficientNet-b1 0.72408 0.70332 0.70111

ResNet34 and ResNet50’s loss are not stable.

EfficientNet-b1 perform better than the other encoder.

The baseline in this task is 0.70753.
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Experience

ASME Result

The table shows the improvement after applying model ensemble.

Model Backbone Origin ASME

UNet ResNet34 0.69100 0.71031 (+0.01900)

UNet ResNet50 0.67828 0.70857 (+0.03029)

UNet EfficientNet-b0 0.68959 0.70233 (+0.01274)

UNet EfficientNet-b1 0.70111 0.72341 (+0.02300)

Implementing this ASME increases private scores by 1 ∼ 3%.

The baseline in this task is 0.70753.
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Conclusion

Conclusion

1 Proposed Erosion Mask Smoothing to maintain loss stability.

2 Apply UNet based model in this task.

3 Proposed Adaptive Single Model Ensemble which can adaptive the
weight of aggregation by itself.

4 Comparing the result with different combinations of encoder and
ASME.

5 Combining UNet with EfficientNet-b1 as encoder, EMS and ASME,
we obtain a best private dice score 0.72341.
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Q&A SESSION

Thank you for your attention.
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