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Prerequisite knowledge

Problem

Poisson equation: {
∆u = f , in Ω,
u = g, on ∂Ω

Biharmonic equation:


∆2u = f , in Ω,
u = g0, on ∂Ω,
∂u
∂n

= g1, on ∂Ω

=⇒


∆u = p, in Ω,
∆p = f , in Ω,
u = g0, on ∂Ω,
∂u
∂n

= g1, on ∂Ω
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Prerequisite knowledge Learning theory

Training process
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Prerequisite knowledge Learning theory

Testing process
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Prerequisite knowledge Neural network

Neural network (NN)

Question: Why functions can be approximated by neural network? 1

Theorem (Universal Approximation Theorem With ReLU Network)

For any Lebesgue-integrable function f : Rn → R and any ε > 0, there
exists a fully-connected ReLU network Q with width ≤ n + 4 and depth
≤ 4n + 1 such that the function FQ represented by this network satisfies∫

Rn
| f (x)− FQ|dx < ε

1Lu et al., The Expressive power of Neural Networks: A View from the Width, NIPS
2017
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Prerequisite knowledge Neural network

Fully connected layer

Version 1:

 y1
y2
y3

 =

 w1,1 w1,2
w2,1 w2,2
w3,1 w3,2

 [ x1
x2

]
+

 b1
b2
b3
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Prerequisite knowledge Neural network

Fully connected layer

Version 2:

 y1
y2
y3

 =

 w1,1 w1,2 b1
w2,1 w2,2 b2
w3,1 w3,2 b3

 x1
x2
1
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Prerequisite knowledge Neural network

Activation function

Sigmoid(x) =
1

1 + e−x ReLU(x) = max(x, 0)
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Prerequisite knowledge Neural network

Activation function

Swish(x) =
x

1 + e−x ReCU(x) = max(x3, 0)
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Prerequisite knowledge Neural network

Residual Network

y(i) = σ2

(
W(i,2) · σ1(W(i,1)x + b(i,1)) + b(i,2)

)
+ x(i)
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Prerequisite knowledge Optimization

Optimization

Gradient decent:

θt = θt−1 − γ∇θL(u; θ)

where

L : loss function.

θ : parameters in the Neural Network.

γ : learning rate.
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Prerequisite knowledge Optimization

Optimization

Adam algorithm (ICLR 2015)

Let L(θ) be the objective function with parameters θ, β1, β2 be the
exponential decay rates for the moment estimates, γ be the learning rate
and ε = 10−8.

1 mt = β1mt−1 + (1− β1)∇θL(θt−1)

2 vt = β2vt−1 + (1− β2)(∇θL(θt−1))
2

3 m̂t =
mt−1

1− βt
1

4 v̂t =
vt−1

1− βt
2

5 θt = θt−1 − γ
m̂t√
v̂t + ε
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Prerequisite knowledge Backward propagation and forward propagation

Forward propagation and backward propagation

Motivation:

Minimize the loss function by using gradient descent.

Approach:

Build a small neural network as defined in the architecture below.

Use forward propagation to get predicted value and calculate the loss.

Use backward propagation and adjust weights and bias accordingly.

Repeat forward and backward steps until the stop criterion is satisfied.

Architecture:

Build a Feed Forward neural network with 2 hidden layers.
All layers have 2 Neurons.
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Prerequisite knowledge Backward propagation and forward propagation

Forward propagation
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Prerequisite knowledge Backward propagation and forward propagation

Forward propagation

Matrix operation W(1) and b(1):

y(1) = W(1)x + b(1)[
y(1)1

y(1)2

]
=

[
w(1)

1,1 w(1)
1,2

w(1)
2,1 w(1)

2,2

] [
x1
x2

]
+

[
b(2)1

b(2)2

]
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Prerequisite knowledge Backward propagation and forward propagation

Forward propagation

Activation function σ1:

x(2) = σ1(y(1))[
x(2)1

x(2)2

]
=

[
σ1(y

(1)
1 )

σ1(y
(1)
2 )

]
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Prerequisite knowledge Backward propagation and forward propagation

Forward propagation

Matrix operation W(2) and b(2):

y(2) = W(2)x(2) + b(2)[
y(2)1

y(2)2

]
=

[
w(2)

1,1 w(2)
1,2

w(2)
2,1 w(2)

2,2

] [
x(2)1

x(2)2

]
+

[
b(1)1

b(1)2

]
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Prerequisite knowledge Backward propagation and forward propagation

Forward propagation

Activation function σ2:

x(3) = σ2(y(2))[
x(3)1

x(3)2

]
=

[
σ2(y

(2)
1 )

σ2(y
(2)
2 )

]
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Prerequisite knowledge Backward propagation and forward propagation

Forward propagation

Matrix operation W(3) and b(3):

z = W(3)x(3) + b(3)

z =
[

w(3)
1 w(3)

2

] [ x(3)1

x(3)2

]
+ b(3)
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Prerequisite knowledge Backward propagation and forward propagation

Backward propagation


∂L

∂w(3)
i

=
∂L
∂z
· ∂z

∂w(3)
i

=
∂L
∂z
· x(3)i

∂L
∂b(3)

=
∂L
∂z
· ∂z

∂b(3)
=

∂L
∂z
· 1
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Prerequisite knowledge Backward propagation and forward propagation

Backward propagation


∂L

∂w(2)
i,j

=
∂L
∂z
· ∂z

∂x(3)j

·
∂x(3)j

∂y(2)j

·
∂y(2)j

∂w(2)
i,j

=
∂L
∂z
· w(3)

j · σ
′
2(y

(2)
j ) · x(2)i

∂L
∂b(2)i

=
∂L
∂z
· ∂z

∂x(3)i

·
∂x(3)i

∂y(2)i

·
∂y(2)i

∂b(2)i

· = ∂L
∂z
· w(3)

i · σ
′
2(y

(2)
i ) · 1
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Prerequisite knowledge Backward propagation and forward propagation

Backward propagation


∂L

∂w(1)
i,j

=
∂L
∂z
· ∂z

∂x(3)∗
· ∂x(3)∗

∂y(2)
· ∂y(2)

∂x(2)
· ∂x(2)

∂y(1)
· ∂y(1)

∂w(1)
i,j

∂L
∂b(1)i

=
∂L
∂z
· ∂z

∂x(3)∗
· ∂x(3)∗

∂y(2)
· ∂y(2)

∂x(2)
· ∂x(2)

∂y(1)
· ∂y(1)

∂b(1)i
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Prerequisite knowledge Backward propagation and forward propagation

Backward propagation

From the results in previous pages, we can have

∂L
∂w(1)

i,j

=
∂L
∂z
· ∂z

∂x(3)∗
· ∂x(3)∗

∂y(2)
· ∂y(2)

∂x(2)
· ∂x(2)

∂y(1)
· ∂y(1)

∂w(1)
i,j

=
∂L
∂z
·
[(

w(3)
1 · σ

′
2(y

(2)
1 ) · w(2)

1,1 + w(3)
2 · σ

′
2(y

(2)
2 ) · w(2)

1,2

)
· σ′1(y

(1)
1 ) · x1

]
∂L

∂b(1)i

=
∂L
∂z
· ∂z

∂x(3)∗
· ∂x(3)∗

∂y(2)
· ∂y(2)

∂x(2)
· ∂x(2)

∂y(1)
· ∂y(1)

∂b(1)i

=
∂L
∂z
·
[(

w(3)
1 · σ

′
2(y

(2)
1 ) · w(2)

1,1 + w(3)
2 · σ

′
2(y

(2)
2 ) · w(2)

1,2

)
· σ′1(y

(1)
1 ) · 1

]
Finally, we can update the weights and biases by previous optimization method.
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Prerequisite knowledge Backward propagation and forward propagation

Revisit activation functions

Sigmoid
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Prerequisite knowledge Backward propagation and forward propagation

Revisit activation functions

ReLU
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Prerequisite knowledge Backward propagation and forward propagation

Revisit activation functions

Leaky ReLU
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Prerequisite knowledge Backward propagation and forward propagation

Revisit activation functions

ReCU
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Prerequisite knowledge Backward propagation and forward propagation

Revisit activation functions

Swish
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Poisson equation

Poisson equation

Consider the Poisson equation with Dirichlet boundary conditions{
∆u = f , in Ω,
u = g, on ∂Ω

We implement following methods to solve the Poisson equation

Deep Galerkin Method (DGM)

Deep Ritz Method (DRM)
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Poisson equation Deep Galerkin Method

Deep Galerkin Method (DGM)

Loss function:

L[u] = ‖∆u− f ‖2
2,Ω + λ‖u− g‖2

2,∂Ω

=
∫

Ω
(∆u− f )2dx + λ

∫
∂Ω

(u− g)2dx

Goal:

min
u∈F
L[u]

where F is the class of neural networks.
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Poisson equation Deep Galerkin Method

Monte Carlo approach

Monte Carlo approach

I :=
∫ b

a
f (x)dx = (b− a)

∫ b

a
f (x) · 1

b− a
dx = (b− a)E[ f (X)]

where X ∼ U(a, b).

1 Generate X1, ..., XN
iid∼ U(a, b)

2 Compute ÎN =
b− a

N

N

∑
i=1

f (Xi)
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Poisson equation Deep Galerkin Method

Monte Carlo approach

Unbiased estimation:

E[ ÎN ] = E

[
b− a

N

N

∑
i=1

f (Xi)

]
=

1
N

N

∑
i=1

(b− a)E [ f (Xi)] = I

Probability convergence:
By Law of Large Number, for any ε > 0, there exists N ∈N such
that

P(| ÎN − I| > ε) = 0

Convergent rate: By Center Limit Theorem,

ÎN − I
σ√
N

D→ N (0, 1)

where σ is population standard deviation. The error convergence rate
is O( 1√

N
).
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Poisson equation Deep Galerkin Method

Deep Galerkin Method (DGM)

L[u] = |Ω|Ex∼p(x)[(∆u(x)− f (x))2] + λ|∂Ω|Ex∼q(x)[(u(x)− g(x))2]

where p(x) is a uniform distribution on Ω and q(x) is a uniform
distribution on ∂Ω.

L[u] = |Ω|
N

N

∑
i=1

[∆u(xi)− f (xi)]
2 + λ

|∂Ω|
M

M

∑
j=1

[u(tj)− g(tj)]
2

where xi ∈ Ω and tj ∈ ∂Ω, for all i = 1, 2, ...N, j = 1, 2, ..., M.
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Poisson equation Deep Galerkin Method

Numerical result of DGM

Information:

Network: ResNet

Activation function: Swish

Residual block structure Model structure
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Poisson equation Deep Galerkin Method

Numerical result of DGM

Information (continue):

Residual block (RB1)

Layer Input shape Output shape parameters

FC1 (batch size, 2) (batch size, 20) 60

FC2 (batch size, 20) (batch size, 20) 420

ResNet model

Layer Input shape Output shape parameters

RB1 (batch size, 2) (batch size, 20) 480

RB2 (batch size, 20) (batch size, 20) 840

RB3 (batch size, 20) (batch size, 20) 840

Output layer (batch size, 20) (batch size, 1) 21

Total parameters : 2181
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Poisson equation Deep Galerkin Method

Numerical result of DGM

Information (continue):

Exact solution: u = ex sin(πy)
Epochs: 20000

Learning rate: 5e− 4
Penalty term: λ = 1
Number of training points: 110 (interior: 100 / boundary: 10)

Number of testing points: 10000 (uniform mesh by 100× 100)

Device: Google Colab (GPU accelerated)

Total time: 1200s (0.06 s/ep)
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Poisson equation Numerical result

Numerical result of DGM

uniform mesh by 100× 100
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Poisson equation Numerical result

Numerical result of DGM
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Poisson equation Numerical result

Numerical result of DGM
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Poisson equation Numerical result

Numerical result of DGM
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Poisson equation Numerical result

Numerical result of DGM

Number of testing points: 100× 100

error � epoch 5000 10000 20000

‖U − u‖∞ 0.3253 0.3461 0.3668

‖U − u‖2 0.1633 0.1657 0.1725
‖U − u‖2

‖u‖2
0.1296 0.1315 0.1369
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Poisson equation Deep Ritz Method

Deep Ritz Method (DRM)

Loss function:

L[u] =
∫

Ω

(
1
2
|∇u|2 + f u

)
dx + λ

∫
∂Ω

(u− g)2dx

Goal:

min
u∈F
L[u]

where F is the class of neural networks.
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Poisson equation Deep Ritz Method

Energy functional

Consider the functional

J [v] =
∫

Ω

(
1
2
|∇v|2 + f v

)
dx =:

∫
Ω

F[v]dx.

Suppose J [v] has local minimum at u. Then for any w ∈ C∞
0 (Ω),

we have

J [u] ≤ J [u + εw]

as ε closed to 0. Define Φ(ε) = J [u + εw]. Then

Φ′(0) =
dΦ(ε)

dε

∣∣∣∣
ε=0

=
∫

Ω

dF[u + εw]

dε

∣∣∣∣
ε=0

dx = 0
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Poisson equation Deep Ritz Method

Energy functional

Note that

F[u + εw] = F[u] +
1
2

ε2|∇w|2 + ε∇u · ∇w + ε f w

Then

Φ′(0) =
∫

Ω

(
ε|∇w|2 +∇u · ∇w + f w

) ∣∣∣∣
ε=0

dx = 0

that is, ∫
Ω
(∇u · ∇w + f w) dx = 0
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Poisson equation Deep Ritz Method

Energy functional

Green’s first identity

∫
Ω

∆uwdx =
∫

∂Ω

∂u
∂n
· wds−

∫
Ω
∇u · ∇wdx

Since w ∈ C∞
0 (Ω), ∫

Ω
(−∆u + f )wdx = 0

Hence we can get

∆u = f .
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Poisson equation Deep Ritz Method

Deep Ritz Method (DRM)

L[u] = |Ω|Ex∼p

[
1
2
|∇u(x)|2 + f (x)u(x)

]
+ λ|∂Ω|Ex∼q[(u(x)− g(x))2]

where p(x) is a uniform distribution on Ω and q(x) is a uniform
distribution on ∂Ω.

L[u] = |Ω|
N

N

∑
i=1

[
1
2
|∇u(xi)|2 + f (xi)u(xi)

]
+ λ
|∂Ω|

M

M

∑
j=1

[u(tj)− g(tj)]
2

where xi ∈ Ω and tj ∈ ∂Ω, for all i = 1, 2, ...N, j = 1, 2, ..., M.
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Poisson equation Numerical result

Numerical result of DRM

Information:

Network: ResNet

Activation function: ReCU

Residual block structure Model structure
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Poisson equation Numerical result

Numerical result of DRM

Information (continue):

Residual block (RB1)

Layer Input shape Output shape parameters

FC1 (batch size, 2) (batch size, 10) 30

FC2 (batch size, 10) (batch size, 10) 110

ResNet model

Layer Input shape Output shape parameters

RB1 (batch size, 2) (batch size, 10) 140

RB2 (batch size, 10) (batch size, 10) 220

RB3 (batch size, 10) (batch size, 10) 220

Output layer (batch size, 10) (batch size, 1) 11

Total parameters : 591
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Poisson equation Numerical result

Numerical result of DRM

Information (continue):

Exact solution: u = ex sin(πy)
Epochs: 20000

Learning rate: 5e− 4
Penalty term: λ = 5000
Number of training points: 600 (interior: 500 / boundary: 100)

Number of testing points: 10000 (uniform mesh by 100× 100)

Device: Google Colab (GPU accelerated)

Total time: 400s (0.02 s/ep)
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Poisson equation Numerical result

Numerical result for DRM
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Poisson equation Numerical result

Numerical result of DRM

epoch 1000

epoch 2500
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Poisson equation Numerical result

Numerical result of DRM

epoch 5000

epoch 10000
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Poisson equation Numerical result

Numerical result of DRM

epoch 20000
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Poisson equation Numerical result

Numerical result
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Poisson equation Numerical result

Numerical result of DRM

Number of testing points: 100× 100

error � epoch 5000 10000 20000

‖U − u‖∞ 0.3329 0.2908 0.2911

‖U − u‖2 0.1128 0.1112 0.1233
‖U − u‖2

‖u‖2
0.0896 0.0883 0.0979
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Biharmonic equation

Biharmonic equation

Consider the Biharmonic equation with boundary conditions
∆2u = f , in Ω,
u = g0, on ∂Ω,
∂u
∂n

= g1, on ∂Ω

To make the calculation easier, we rewrite the equation as following,


∆u = p, in Ω,
∆p = f , in Ω,
u = g0, on ∂Ω,
∂u
∂n

= g1, on ∂Ω

JW, YH, WR (NYCU) NPDE final report February 4, 2024 57 / 70



Biharmonic equation Deep Galerkin Method

DGM for biharmonic equation

Loss function:

L[u] = ‖∆u− p‖2
2,Ω + ‖∆p− f ‖2

2,Ω

+ α‖u− g0‖2
2,∂Ω + β‖(∇u · n)− g1‖2

2,∂Ω

By Monte Carlo approach,

L[u] = |Ω|
N

N

∑
i=1

[∆u(xi)− p(xi)]
2 +
|Ω|
N

N

∑
i=1

[∆p(xi)− f (xi)]
2

+ α
|∂Ω|

M

M

∑
j=1

[u(tj)− g0(tj)]
2 + β

|∂Ω|
M

N

∑
j=1

[∇u(tj) · n(tj)− g1(tj)]
2

where xi ∈ Ω and tj ∈ ∂Ω, for all i = 1, 2, ...N, j = 1, 2, ..., M.
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Biharmonic equation Deep Galerkin Method

Numerical result of DGM

Information:

Network: ResNet

Activation function: Swish

Residual block structure Model structure
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Biharmonic equation Deep Galerkin Method

Numerical result of DGM

Information (continue):

Residual block (RB1)

Layer Input shape Output shape parameters

FC1 (batch size, 2) (batch size, 100) 300

FC2 (batch size, 100) (batch size, 100) 10100

ResNet model

Layer Input shape Output shape parameters

RB1 (batch size, 2) (batch size, 100) 10400

RB2 (batch size, 100) (batch size, 100) 20200

Output layer1 (batch size, 100) (batch size, 1) 101

Output layer2 (batch size, 100) (batch size, 1) 101

Total parameters : 30802
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Biharmonic equation Numerical result

Numerical result of DGM

Information (continue):

Exact solution: u = ex sin(πy)
Epochs: 10000

Learning rate: 5e− 4
Penalty term: λ = 1
Number of training points: 130 (interior: 100 / boundary: 30)

Number of testing points: 10000 (uniform mesh by 100× 100)

Device: Google Colab (GPU accelerated)

Total time: 1040s (0.1 s/ep)
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Biharmonic equation Numerical result

Numerical result of DGM
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Biharmonic equation Numerical result

Numerical result of DGM

uniform mesh by 100× 100
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Biharmonic equation Numerical result

Numerical result of DGM
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Biharmonic equation Numerical result

Numerical result of DGM

Number of training points: 100 + 30 / ep

Number of testing points: 100× 100

error � epoch 2000 4000 6000 8000 10000

‖U − u‖∞ 0.4190 0.1517 0.1456 0.1085 0.0993

‖U − u‖2 0.1419 0.0701 0.0542 0.0519 0.0452
‖U − u‖2

‖u‖2
0.1126 0.0556 0.0430 0.0412 0.0359
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Biharmonic equation Numerical result

Numerical result of DGM

Number of testing points: 100× 100
Error: relative error of two norm

Tp � epoch 2000 4000 6000 8000 10000

100/10 0.0619 0.0426 0.0408 0.0421 0.0391

400/20 0.0417 0.0316 0.0357 0.0331 0.0270

900/30 0.0363 0.0257 0.0347 0.0278 0.0264
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Biharmonic equation Numerical result

Numerical result of DGM

Epochs: 10000

Number of training points: 100 + 30 / ep

Number of testing points: 100× 100

error Swish Sigmoid ReLU

‖U − u‖∞ 0.0993 0.2292 0.0723

‖U − u‖2 0.0452 0.0897 0.0220
‖U − u‖2

‖u‖2
0.0359 0.0712 0.0175
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Code on Github

Poisson DGM:
https://github.com/Jia-wei-liao/NPDE_final_project/

blob/main/DGM_Poisson2D.ipynb

Possion DRM:
https://github.com/Jia-wei-liao/NPDE_final_project/

blob/main/DRM_Poisson2D.ipynb

Biharmonic DGM:
https://github.com/Jia-wei-liao/NPDE_final_project/

blob/main/DGM_Biharmonic2D.ipynb
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THE END

Thanks for listening!
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