Sentiment Analysis of Reviews on Yelp Dataset

Jia-Wei Liao¹, Yi-Cheng Hung¹, Yu-Lin Tsai² Advisor: Horng-Shing Lu³

Department of ¹ Applied Mathematics, ² Arete Honors Program, ³ Statistics National Yang Ming Chiao Tung University

February 4, 2024

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

February 4, 2024

イロト イヨト イヨト ・

Outline

Introduction

- 2 Exploratory Data Analysis and Preprocessing
- 3 Traditional Machine Learning Method
- Traditional Deep Learning Method: RNN-based
- 5 State of The Art Deep Learning Method: Transformer

6 Conclusion

< ロ > < 同 > < 回 > < 回 > < 回 > <

Motivation

- Do not know what to eat after going out
- It is very troublesome to prepare in advance

My first time trying. The fried chicken and the sauce make a perfect combo. Will definitely come again!

♥ Useful 2 🕒 Funny 🕞 Cool 1

э

3/45

イロト イポト イヨト イヨト

Goal

Yelp Dataset: This data set mainly collects information on restaurant reviews and satisfaction ratings.

Goal: Use the customer review to analyze whether the customer is satisfied with the foods.

イロト イヨト イヨト ・

Data Preview

We have 10,000 samples of data at the first.

user_id	type	text	stars	review_id	date	business_id
rLtl8ZkDX5vH5nAx9C3q5Q	review	My wife took me here on my birthday for breakf	5	fWKvX83p0-ka4JS3dc6E5A	2011-01-26	9yKzy9PApeiPPOUJEtnvkg
0a2KyEL0d3Yb1V6aivbluQ	review	I have no idea why some people give bad review	5	IjZ33sJrzXqU-0X6U8NwyA	2011-07-27	ZRJwVLyzEJq1VAihDhYiow
0hT2KtfLiobPvh6cDC8JQg	review	love the gyro plate. Rice is so good and I als	4	IESLBzqUCLdSzSqm0eCSxQ	2012-06-14	6oRAC4uyJCsJI1X0WZpVSA
uZetI9T0NcROGOyFfughhg	review	Rosie, Dakota, and I LOVE Chaparral Dog ParkII	5	G-WvGalSbqqaMHINnByodA	2010-05-27	_1QQZuf4zZOyFCvXc0o6Vg
vYmM4KTsC8ZfQBg-J5MWkw	review	General Manager Scott Petello is a good eggIII	5	1uJFq2r5QfJG_6ExMRCaGw	2012-01-05	6ozycU1RpktNG2-1BroVtw

< □ > < @ >

Percentage of stars

3 N 3

5 / 45

Data Preview

Define the label as

$$label_i = \begin{cases} 1, & star_i \ge 4 \\ 0, & otherwise \end{cases}$$

• There are 6863 data with label 1 and 3137 data with label 0

J.W., Y.C., Y.L. (NYCU)

Split training set and testing set

J.W., Y.C., Y.L. (NYCU)

Eliminate Stop Words

Stop words are the words which are mostly used as fillers and hardly have any useful meaning. So, we use the following method:

- Remove punctuation and uniform lowercase by ourselves
- atural Language Toolkit (NLTK) package

8/45

Eliminate Stop Words

Review:

My wife took me here on my birthday for breakfast and it was excellent. The weather was perfect which made sitting outside overlooking their grounds an absolute pleasure.

Sentence:

- **Self:** my wife took me here on my birthday for breakfast and it was excellent the weather was perfect which made sitting outside overlooking their grounds an absolute pleasure
- **NLTK:** wife took birthday breakfast excellent weather perfect made sitting outside overlooking grounds absolute pleasure

Eliminate Stop Words

Self

< □ > < @ >

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

February 4, 2024

표 제 표

10 / 45

Data Preview

Term Frequency (TF)

Let $f_{t,d}$ be the frequency of term t in the document d.

Term frequency (TF)

Term frequency is the number of times each word appeared in document with normalization.

$$\mathrm{TF}(t,d) = \frac{f_{t,d}}{\sum_{t=1}^{n} f_{t,d}}$$

▶ < ∃ >

Inverse Document Frequency (IDF)

Let $f_{t,d}$ be the frequency of term t in the document d.

Inverse Document Frequency (IDF)

Document frequency is the number of documents which contain the term t. Define inverse document frequency as follow:

$$IDF(t) = \log \frac{m}{1 + |\{d \mid f_{t,d} > 0\}|}$$

 $n \times m$

TF-IDF

$$\text{TF-IDF}(t, d) = \text{TF}(t, d) \times \text{IDF}(t)$$

Top 5	Doc1	Doc2	Doc3	Doc4
good	0	0.0303	0.1388	0
place	0.0417	0.0298	0	0
food	0.0438	0	0	0
great	0	0.0329	0	0
like	0.0480	0.1029	0	0

J.W., Y.C., Y.L. (NYCU)

February 4, 2024

イロト イヨト イヨト イヨト

Experiment: preprocessing by ourselves

J.W., Y.C., Y.L. (NYCU)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

э

Experiment: preprocessing by NLTK

J.W., Y.C., Y.L. (NYCU)

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト …

Experiment: preprocessing by ourselves

Model	Precision	Recall	F1-score	Accuracy
Naive Bayes	0.7557	0.8834	0.8016	0.7240
Decision Tree	0.7654	0.8463	0.8038	0.7165
Random Forest	0.7604	0.8878	0.8192	0.7310
AdaBoost	0.8394	0.8834	0.8608	0.8040
Gradient Boosting	0.7897	0.9439	0.8598	0.7890
SVM	0.8255	0.9512	0.8838	0.8285

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

February 4, 2024

イロン イヨン イヨン

Experiment: preprocessing by NLTK

Model	Precision	Recall	F1-score	Accuracy
Naive Bayes	0.7547	0.9119	0.8259	0.7360
Decision Tree	0.7288	0.9082	0.8087	0.7050
Random Forest	0.7840	0.8645	0.8223	0.7435
AdaBoost	0.8219	0.8806	0.8502	0.7870
Gradient Boosting	0.7779	0.9541	0.8570	0.7815
SVM	0.8047	0.9541	0.8730	0.8095

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

February 4, 2024

(日)

Experiment

Traditional Deep Learning Method: RNN-based

History of Deep Learning in NLP

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

February 4, 2024

イロト イヨト イヨト イヨト

20 / 45

э

Date Manifold

Manifold Assumption

Natural high dimensional data concentrates close to a non-linear low-dimensional manifold.

Traditional Deep Learning Method: RNN-based

Word Embedding Model

- Count-Based: TF-IDF
- Prediction-Based ¹ : CBOW, Skip gram

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

Word Embedding Model

Continuous bag of word (CBOW)

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

February 4, 2024

(日) (四) (日) (日) (日)

э

Traditional Deep Learning Method: RNN-based

Word Embedding Model

Skip Gram

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

February 4, 2024

イロト イポト イヨト イヨト

Embedding Matrix

- number of the word: 25873
- maximum length: 150
- embedding dimension: 250

T-distributed Stochastic Neighbor Embedding (t-SNE)²

- It's a manifold learning
- It converts similarities between data points to joint probabilities and minimize the KL divergence

²L.-M., G. Hinton, Visualizing Data usingt-SNE, Journal of Machine Learning Research, 2008. $(\Box > \langle \Box \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \Box \land \langle \Xi \land \Box \land \langle \Xi \land \langle \Xi \land \Box \land \Box \land \langle \Xi \land \Box \land \Box \land \Box \land$

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

February 4, 2024

26 / 45

J.W., Y.C., Y.L. (NYCU)

February 4, 2024

wife similar word	husbands	girlfriend	boyfriend	dad	brother
cosine similarity	0.77	0.75	0.74	0.71	0.70

J.W., Y.C., Y.L. (NYCU)

February 4, 2024

・ロト ・四ト ・ヨト ・ヨト

28 / 45

bad similar word	horrible	shitty	ruined	dissapointed	unhappy
cosine similarity	0.64	0.63	0.60	0.60	0.60

J.W., Y.C., Y.L. (NYCU)

February 4, 2024

イロト イポト イヨト イヨト

29 / 45

æ

Traditional Deep Learning Method: RNN-based

Convolutional Neural Network (CNN)

(日) (四) (日) (日) (日)

э

Experiment: CNN

Model	Precision	Recall	F1-score	Accuracy
CNN with sigmoid	0.8317	0.9006	0.8648	0.8215
CNN with softmax	0.9038	0.8558	0.8792	0.8295

J.W., Y.C., Y.L. (NYCU)

February 4, 2024

イロト イヨト イヨト イヨト

Evaluation: ROC Curve

Model	Thresholds	Accuracy
CNN + sigmoid	0.5	0.8215
CNN + sigmoid	0.33 (best)	0.8315 (+0.01)

J.W., Y.C., Y.L. (NYCU)

February 4, 2024

< □ > < □ > < □ > < □ > < □ >

Data Augmentation

Mixup ³

Given $(x_i, y_i), (x_j, y_j) \in \mathcal{D}$ and $\lambda \sim \text{Beta}(\alpha, \alpha)$ with $\alpha \in (0, \infty)$

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j,$$

 $\tilde{y} = \lambda y_i + (1 - \lambda) y_j$

mixup

³H. Zhang, M. Cisse, Y.-N. Dauphin, and D. Lopez-Paz mixup: Beyond Empirical Risk Minimization, ICLR, 2018.

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

February 4, 2024 33 / 45

Experiment: CNN + Mixup

Model	Accuracy
CNN + sigmoid (thresholds = 0.5)	0.8215
CNN + sigmoid (thresholds = 0.33)	0.8315 (+0.010)
CNN + softmax	0.8295
CNN + softmax + mixup	0.8320 (+0.002)

J.W., Y.C., Y.L. (NYCU)

February 4, 2024

< □ > < □ > < □ > < □ > < □ >

Recurrent Neural Network (RNN)

 $s_t = f(Ux_t + Ws_{t-1})$

- *s_t* is calculated based on the current input and the previous time step's hidden state.
- f is non-linear transformation

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

35 / 45

< □ > < 凸

Traditional Deep Learning Method: RNN-based

Long Short Term Memory (LSTM)

$$x = [h_{t-1} \quad x_t]^{\top}$$

$$f_t = \sigma(W_f x + b_f)$$

$$i_t = \sigma(W_i x + b_i)$$

$$o_t = \sigma(W_o x + b_o)$$

$$c_t = f_t \odot c_{t-1} + i_t \tanh(W_c X + b_c)$$

$$h_t = o_t \odot \tanh c_t$$

J.W., Y.C., Y.L. (NYCU)

February 4, 2024

イロト イヨト イヨト

Experiment: LSTM

Finally, We get the test accuracy of 0.8130.

イロト イヨト イヨト イヨト

э

Transformer

Transformer

SERT

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

イロト イヨト イヨト イヨト

Bidirectional Encoder Representations from Transformers

BERT : Encoder of Transformer ⁴

⁴A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.-N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need, Computation and Language, 2017. **D**

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

February 4, 2024

39 / 45

BERT

We use pretrain weight in the BERT and connect the linear binary classifier at the end.

- Input: sentences
- Output: predicted class

40 / 45

Attention Block

- Q: queries, K: keys, V: values
- d_k is keys of dimension

Attention(Q, K, V) = softmax
$$\left(\frac{QK^{\top}}{\sqrt{d_k}}\right) V$$

Scaled Dot-Product Attention

Multi-Head Attention

J.W., Y.C., Y.L. (NYCU)

February 4, 2024

イロト 不得 トイヨト イヨト

41 / 45

Experiment: BERT

Finally, We get the test accuracy of 0.8550.

イロン イ理 とく ヨン イ ヨン

Conclusion

In this project, we implement machine learning methods and deep learning methods. The deep learning model gets good performance. We compared the result as follow:

• Machine Learning method:

Method	Naive Bayes	Tree-based	SVM
Accuracy	0.7240	0.8040	0.8285

• Deep Learning method:

Model	CNN (with mixup)	LSTM	BERT
Accuracy	0.8320	0.8130	0.8550

Conclusion

In this project, we implement machine learning methods and deep learning methods. The deep learning model gets good performance. We compared the result as follow:

• Machine Learning method:

Method	Naive Bayes	Tree-based	SVM
Accuracy	0.7240	0.8040	0.8285

• Deep Learning method:

Model	CNN (with mixup)	LSTM	BERT
Accuracy	0.8320	0.8130	0.8550

Machine learning methods are more explainable but deep learning method like black boxes. At the recent, many research start to develop **Explainable AI**. So, we can develop towards this research topic in the future.

J.W., Y.C., Y.L. (NYCU)

Reference

- Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Computation and Language, 2018.
- 2 Laurens van der Maaten, Geoffrey Hinton, Visualizing Data using t-SNE, Journal of Machine Learning Research, 2008.
- Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Efficient Estimation of Word Representations in Vector Space, Computation and Language, 2013.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, Attention Is All You Need, Computation and Language, 2017.
- Tom Young, Devamanyu Hazarika, Soujanya Poria, Erik Cambria, Recent Trends in Deep Learning Based Natural Language Processing, Computation and Language, 2017.
- Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz, mixup: Beyond Empirical Risk Minimization, ICLR, 2018.

Thanks for listening!

J.W., Y.C., Y.L. (NYCU)

Data Science Final Project

February 4, 2024

э

45 / 45

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト …