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Introduction

Motivation

Do not know what to eat after going out

It is very troublesome to prepare in advance
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Introduction

Goal

Yelp Dataset: This data set mainly collects information on restaurant
reviews and satisfaction ratings.

Goal: Use the customer review to analyze whether the customer is
satisfied with the foods.
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Exploratory Data Analysis and Preprocessing

Data Preview

We have 10,000 samples of data at the first.
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Exploratory Data Analysis and Preprocessing

Data Preview

Define the label as

labeli =

{
1, stari ≥ 4
0, otherwise

There are 6863 data with label 1 and 3137 data with label 0
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Exploratory Data Analysis and Preprocessing

Split training set and testing set
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Exploratory Data Analysis and Preprocessing

Eliminate Stop Words

Stop words are the words which are mostly used as fillers and hardly have
any useful meaning. So, we use the following method:

1 Remove punctuation and uniform lowercase by ourselves

2 Natural Language Toolkit (NLTK) package
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Exploratory Data Analysis and Preprocessing

Eliminate Stop Words

Review:

My wife took me here on my birthday for breakfast and it was excellent.
The weather was perfect which made sitting outside overlooking their
grounds an absolute pleasure.

Sentence:

Self: my wife took me here on my birthday for breakfast and it was
excellent the weather was perfect which made sitting outside
overlooking their grounds an absolute pleasure

NLTK: wife took birthday breakfast excellent weather perfect made
sitting outside overlooking grounds absolute pleasure

J.W., Y.C., Y.L. (NYCU) Data Science Final Project February 4, 2024 9 / 45



Exploratory Data Analysis and Preprocessing

Eliminate Stop Words

Self NLTK
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Exploratory Data Analysis and Preprocessing

Data Preview
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Exploratory Data Analysis and Preprocessing

Term Frequency (TF)

Let ft,d be the frequency of term t in the document d.

Term frequency (TF)

Term frequency is the number of times
each word appeared in document with
normalization.

TF(t, d) =
ft,d

n

∑
t=1

ft,d
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Exploratory Data Analysis and Preprocessing

Inverse Document Frequency (IDF)

Let ft,d be the frequency of term t in the document d.

Inverse Document Frequency (IDF)

Document frequency is the number of
documents which contain the term t.
Define inverse document frequency as
follow:

IDF(t) = log
m

1 + |{d | ft,d > 0}|
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Exploratory Data Analysis and Preprocessing

TF-IDF

TF-IDF(t, d) = TF(t, d)× IDF(t)

Top 5 Doc1 Doc2 Doc3 Doc4

good 0 0.0303 0.1388 0

place 0.0417 0.0298 0 0

food 0.0438 0 0 0

great 0 0.0329 0 0

like 0.0480 0.1029 0 0

J.W., Y.C., Y.L. (NYCU) Data Science Final Project February 4, 2024 14 / 45



Traditional Machine Learning Method

Experiment: preprocessing by ourselves
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Traditional Machine Learning Method

Experiment: preprocessing by NLTK
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Traditional Machine Learning Method

Experiment: preprocessing by ourselves

Model Precision Recall F1-score Accuracy

Naive Bayes 0.7557 0.8834 0.8016 0.7240

Decision Tree 0.7654 0.8463 0.8038 0.7165

Random Forest 0.7604 0.8878 0.8192 0.7310

AdaBoost 0.8394 0.8834 0.8608 0.8040

Gradient Boosting 0.7897 0.9439 0.8598 0.7890

SVM 0.8255 0.9512 0.8838 0.8285
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Traditional Machine Learning Method

Experiment: preprocessing by NLTK

Model Precision Recall F1-score Accuracy

Naive Bayes 0.7547 0.9119 0.8259 0.7360

Decision Tree 0.7288 0.9082 0.8087 0.7050

Random Forest 0.7840 0.8645 0.8223 0.7435

AdaBoost 0.8219 0.8806 0.8502 0.7870

Gradient Boosting 0.7779 0.9541 0.8570 0.7815

SVM 0.8047 0.9541 0.8730 0.8095
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Traditional Machine Learning Method

Experiment
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Traditional Deep Learning Method: RNN-based

History of Deep Learning in NLP
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Traditional Deep Learning Method: RNN-based

Date Manifold

Manifold Assumption

Natural high dimensional data concentrates close to a non-linear
low-dimensional manifold.
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Traditional Deep Learning Method: RNN-based

Word Embedding Model

Count-Based: TF-IDF

Prediction-Based 1 : CBOW, Skip gram

1T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient Estimation of Word
Representations in Vector Space, Computation and Language, 2013
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Traditional Deep Learning Method: RNN-based

Word Embedding Model

Continuous bag of word (CBOW)

J.W., Y.C., Y.L. (NYCU) Data Science Final Project February 4, 2024 23 / 45



Traditional Deep Learning Method: RNN-based

Word Embedding Model

Skip Gram
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Traditional Deep Learning Method: RNN-based

Embedding Matrix

number of the word: 25873

maximum length: 150

embedding dimension: 250
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Traditional Deep Learning Method: RNN-based

Visualizing Data Using t-SNE

T-distributed Stochastic Neighbor Embedding (t-SNE) 2

It’s a manifold learning

It converts similarities between data points to joint probabilities and
minimize the KL divergence

2L.-M., G. Hinton, Visualizing Data usingt-SNE, Journal of Machine Learning
Research, 2008.
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Traditional Deep Learning Method: RNN-based

Visualizing Data Using t-SNE
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Traditional Deep Learning Method: RNN-based

Visualizing Data Using t-SNE

wife similar word husbands girlfriend boyfriend dad brother
cosine similarity 0.77 0.75 0.74 0.71 0.70
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Traditional Deep Learning Method: RNN-based

Visualizing Data Using t-SNE

bad similar word horrible shitty ruined dissapointed unhappy
cosine similarity 0.64 0.63 0.60 0.60 0.60
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Traditional Deep Learning Method: RNN-based

Convolutional Neural Network (CNN)
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Traditional Deep Learning Method: RNN-based

Experiment: CNN

Model Precision Recall F1-score Accuracy

CNN with sigmoid 0.8317 0.9006 0.8648 0.8215

CNN with softmax 0.9038 0.8558 0.8792 0.8295
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Traditional Deep Learning Method: RNN-based

Evaluation: ROC Curve

Model Thresholds Accuracy

CNN + sigmoid 0.5 0.8215

CNN + sigmoid 0.33 (best) 0.8315 (+0.01)
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Traditional Deep Learning Method: RNN-based

Data Augmentation

Mixup 3

Given (xi, yi), (xj, yj) ∈ D and λ ∼ Beta(α, α) with α ∈ (0, ∞)

x̃ = λxi + (1 − λ)xj,

ỹ = λyi + (1 − λ)yj

3H. Zhang, M. Cisse, Y.-N. Dauphin, and D. Lopez-Paz mixup: Beyond Empirical
Risk Minimization, ICLR, 2018.
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Traditional Deep Learning Method: RNN-based

Experiment: CNN + Mixup

Model Accuracy

CNN + sigmoid (thresholds = 0.5) 0.8215

CNN + sigmoid (thresholds = 0.33) 0.8315 (+0.010)

CNN + softmax 0.8295

CNN + softmax + mixup 0.8320 (+0.002)
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Traditional Deep Learning Method: RNN-based

Recurrent Neural Network (RNN)

st = f (Uxt + Wst−1)

st is calculated based on the current input and the previous time
step’s hidden state.

f is non-linear transformation
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Traditional Deep Learning Method: RNN-based

Long Short Term Memory (LSTM)

x = [ht−1 xt]
⊤

ft = σ(W f x + b f )

it = σ(Wix + bi)

ot = σ(Wox + bo)

ct = ft ⊙ ct−1 + it tanh(WcX + bc)

ht = ot ⊙ tanh ct
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Traditional Deep Learning Method: RNN-based

Experiment: LSTM

Finally, We get the test accuracy of 0.8130.
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State of The Art Deep Learning Method: Transformer

Transformer

Transformer BERT
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State of The Art Deep Learning Method: Transformer

Bidirectional Encoder Representations from Transformers

BERT : Encoder of Transformer 4

4A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.-N. Gomez, L. Kaiser,
I. Polosukhin, Attention Is All You Need, Computation and Language, 2017.
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State of The Art Deep Learning Method: Transformer

BERT

We use pretrain weight in the BERT and connect the linear binary
classifier at the end.

Input: sentences

Output: predicted class
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State of The Art Deep Learning Method: Transformer

Attention Block

Q: queries, K: keys, V: values

dk is keys of dimension

Attention(Q, K, V) = softmax
(

QK⊤
√

dk

)
V
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State of The Art Deep Learning Method: Transformer

Experiment: BERT

Finally, We get the test accuracy of 0.8550.
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Conclusion

Conclusion

In this project, we implement machine learning methods and deep learning
methods. The deep learning model gets good performance. We compared
the result as follow:

Machine Learning method:

Method Naive Bayes Tree-based SVM

Accuracy 0.7240 0.8040 0.8285

Deep Learning method:

Model CNN (with mixup) LSTM BERT

Accuracy 0.8320 0.8130 0.8550

Machine learning methods are more explainable but deep learning method
like black boxes. At the recent, many research start to develop
Explainable AI. So, we can develop towards this research topic in the
future.
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THE END

Thanks for listening!
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