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Introduction

Motivation

@ Do not know what to eat after going out

@ It is very troublesome to prepare in advance

y Shichao H.
Manhattan, NY
@19 @182
00000 1222021

8 1 photo

My first time trying. The fried chicken and the sauce make a perfect combo. Will definitely come
again!

Nash combos

@ Useful2 @ Funny @ Cool1
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Goal

Yelp Dataset: This data set mainly collects information on restaurant
reviews and satisfaction ratings.

yelp 54

Goal: Use the customer review to analyze whether the customer is
satisfied with the foods.
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Data Preview

We have 10,000 samples of data at the first.

business_id
9yKzyIRADEIPPOUJENVKG
ZRIWVLYZEJQTVAIDNYioW
60RACAUYJCSJITXOWZPVSA
_1QQZuf4zZ0yFCYXc006vg

B0zycU1RpKING2-1BroViw

date

20110126

2011-07-27

2012-06-14

2010-05-27

2012-01-05

review_id stars text

TWKvX83p0-kadJS3dCc6ESA
112335Jr2XqU-0XEUBNWYA
IESLBZqUCLAS2SqM0eCSxQ
G-WyGalSbagaMHINNByodA

1uJFQ2r5QfJG_BEXMRCaGw

5 My wife ook me here on my birthday for break.
5 | have no idea why some people give bad review...
4 love the gyro plate. Rice is so good and | als...
5 Rosie, Dakota, and | LOVE Chaparral Dog Park!!

5 General Manager Scott Petello is a good egglll

type
review
review
review
review

review

Percentage of
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1500

stars counts
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500

stars
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14.6%

user_id
LUBZKDX5vHSNAXIC3G5Q
0a2KyELQd3YD1V6avbIuQ
ONT2KIfLiobPVh6CcDCBJQg
UZeti9TONCROGOYFfughhg

VYmM4KTsC8ZfQBg-j5MWhw

f stars
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Exploratory Data Analys

Data Preview

@ Define the label as

1, star; >4

label; =
' 0, otherwise

@ There are 6863 data with label 1 and 3137 data with label O

Percentage of label

7000

0

6000 4
5000 4
4000 4

3000

Label counts

2000

1000 4

Label
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1400
= train

50007 gest
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2 3 2 3
Label Fold Fold

label % in fold-1 label % in fold-2 label % in fold-3 label % in fold-4 label % in fold-5
0 0 0 0 0
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Exploratory Data Analysis and Preprocessing

Eliminate Stop Words

Stop words are the words which are mostly used as fillers and hardly have
any useful meaning. So, we use the following method:

© Remove punctuation and uniform lowercase by ourselves
@ Natural Language Toolkit (NLTK) package

JW., Y.C,YL

(NYCU)
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Eliminate Stop Words

Review:

My wife took me here on my birthday for breakfast and it was excellent.
The weather was perfect which made sitting outside overlooking their
grounds an absolute pleasure.

Sentence:

o Self: my wife took me here on my birthday for breakfast and it was
excellent the weather was perfect which made sitting outside
overlooking their grounds an absolute pleasure

o NLTK: wife took birthday breakfast excellent weather perfect made
sitting outside overlooking grounds absolute pleasure
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Eliminate Stop Words

Self NLTK
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Exploratory Data Analysis and Preprocessing

Data Preview

0.00175 self
' NLTK

0.00150
0.00125

0.00100

Density

0.00075
0.00050

0.00025

0.00000 —/ T

o 10‘00 20‘00 30‘00 40‘00 5000
English words length
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Term Frequency (TF)

Let f; 4 be the frequency of term t in the document 4.

document
Term frequency (TF) ) d .
Term frequency is the number of times
each word appeared in document with
normalization. :
t ® .
f}d term
TE(t,d) = ~—
Y fra
t=1
\ J
nxm
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Exploratory Data Analysis and Preprocessing

Inverse Document Frequency (IDF)

Let f; 4 be the frequency of term t in the document 4.

Inverse Document Frequency (IDF)

Document frequency is the number of
documents which contain the term ¢.
Define inverse document frequency as

follow:

IDF(t)

m

JW., Y.C., Y.L. (NYCU)

=1
BT foa > 0}
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Exploratory Data Analysis and Preprocessing

TF-IDF

TF-IDF(t,d) = TF(t,d) x IDF(t)

Top 5 || Docl Doc2 Doc3 | Doc4
good 0 0.0303 | 0.1388 0
place || 0.0417 | 0.0298 0 0
food || 0.0438 0 0 0
great 0 0.0329 0 0
like 0.0480 | 0.1029 0 0

JW., Y.C., Y.L. (NYCU)
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Traditional Machine Learning Method

Experiment: preprocessing by ourselves

JW.,
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Experiment: preprocessing by NLTK

JW.,

Traditional Machine Learning Method
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Traditional Machine Learning Method

Experiment: preprocessing by ourselves

Model Precision | Recall | Fl-score | Accuracy

Naive Bayes 0.7557 | 0.8834 | 0.8016 0.7240
Decision Tree 0.7654 0.8463 | 0.8038 0.7165
Random Forest 0.7604 | 0.8878 | 0.8192 0.7310
AdaBoost 0.8394 | 0.8834 | 0.8608 0.8040
Gradient Boosting 0.7897 0.9439 | 0.8598 0.7890

SVM 0.8255 | 0.9512 | 0.8838 | 0.8285
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Experiment: preprocessing by NLTK

Model Precision | Recall | Fl-score | Accuracy

Naive Bayes 0.7547 | 0.9119 | 0.8259 0.7360
Decision Tree 0.7288 | 0.9082 | 0.8087 0.7050
Random Forest 0.7840 | 0.8645 | 0.8223 0.7435
AdaBoost 0.8219 | 0.8806 | 0.8502 0.7870
Gradient Boosting 0.7779 | 0.9541 | 0.8570 0.7815

SVM 0.8047 | 0.9541 | 0.8730 | 0.8095
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Traditional Machine Learning

Experiment
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Traditional Deep Learning Method: RNN-based

History of Deep Learning in NLP

[
z.
P
1997 1998 2013 2017 ) 2018
—e 4 L 4 4
LSTM CNN Word to vector Transformer BERT
Google Google Google
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Traditional Deep Learning Method: RNN-based

Date Manifold

Manifold Assumption

Natural high dimensional data concentrates close to a non-linear
low-dimensional manifold.

D : collection of

: d
high dimensional data Euclidean space R
°
2,1,..,4) b
encoding map ¢ ®
—-

me
() J
1,3, ..

(Z,P) : low dimension manifold
with probability measure
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Traditional Deep Learning Method: RNN-based

Word Embedding Model

o Count-Based: TF-IDF
o Prediction-Based ! : CBOW, Skip gram

LT, Mikolov, K. Chen, G. Corrado, J. Dean, Efficient Estimation of Word
Representations in Vector Space, Computation and Language, 2013
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Traditional Deep Learning Method: RNN-based

Word Embedding Model

Continuous bag of word (CBOW)

)
[l (0
— 0| — M~
: Output
O Probability
Wit2
—/
Embedding vector
Wit3 . .
d dimension
Input
One-hot vector
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Traditional Deep Learning Method: RNN-based

Word Embedding Model

Skip Gram
M -
)
o] M-
o M-
«l— |o| —
. . Wit1
Input :
One-hot vector
o
—/
Embedding vector . Wi
d dimension 3
Output
Probability
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Traditio

Vlethod: RNN-based
Embedding Matrix

@ number of the word: 25873
@ maximum length: 150
@ embedding dimension: 250

embedding matrix
sentence with one-hot vector

00100 -ee
150

sentence matrix
25873

25873

150

250

250
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Traditional Deep Learning Method: RNN-based

Visualizing Data Using t-SNE

T-distributed Stochastic Neighbor Embedding (t-SNE) 2

@ It's a manifold learning

@ |t converts similarities between data points to joint probabilities and
minimize the KL divergence

—
-

2L.-M., G. Hinton, Visualizing Data usingt-SNE, Journal of Machine Learning
Research, 2008.
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Traditional Deep Learning Method: RNN-based

Visualizing Data Using t-SNE
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Traditional Deep Learning Method: RNN-based

Visualizing Data Using t-SNE

665

@aunt JHrother
i dad
g\rlfrieryuy riend
ife dusband
wife similar word || husbands | girlfriend | boyfriend | dad | brother
cosine similarity 0.77 0.75 0.74 0.71 0.70
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Traditional Deep Learning Method: RNN-based

Visualizing Data Using t-SNE

shitthad

miserable

TUigfible

dissapointed

unhappy

15 1 2 2 2 =

bad similar word || horrible | shitty | ruined | dissapointed | unhappy
cosine similarity 0.64 0.63 0.60 0.60 0.60
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Traditional Deep Learning Method: RNN-based

Convolutional Neural Network (CNN)

sentence matrix
logistic regression

My
wife stride 1 dense + sigmoid probability of positive
took
me
B
here . .
convolution pooling

dense + softmax probability of 2 class

convolution filter
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Traditional Deep Learning Method: RNN-based

Experiment: CNN

07 CNN Loss CNN Accuracy
e~ training loss
wvalidation loss.
095
06
090
05
085
| =
w04 g
3 5 os0 &
2 3 7
®
03 075
J 4
02 070 §
o1 validation accuracy
o pu] 20 30 40 50 o 10 20 30 40 50
epoch epoch
Model Precision | Recall | Fl-score | Accuracy

CNN with sigmoid 0.8317 | 0.9006 | 0.8648 0.8215
CNN with softmax 0.9038 | 0.8558 | 0.8792 0.8295
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Traditional Deep Learning Method: RNN-based

Evaluation: ROC Curve

ROC curve
L —— ROC curve (AUC = 0.895)
001+~ R
o o F:Iie positive roafe o e
Model Thresholds | Accuracy
CNN + sigmoid || 0.5 0.8215
CNN + sigmoid || 0.33 (best) | 0.8315 (+0.01)

JW, Y.C, Y.L
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Traditional Deep Learning Method: RNN-based

Data Augmentation

Mixup 3
Given (x;, i), (xj,yj) € D and A ~ Beta(a,a) with a € (0, 00)

¥ = Ax;+ (1 — /\)x]',
7= Ayi+ (1 - M)y

ERM mixup
) eoe®
gy T e wy Tt e
“ ’ * ... ““ , . ...‘
5 4 < S
b 0 “ | 1 .
% RS
..: . '~: b L
[y - Z [
ek

e o

3H. Zhang, M. Cisse, Y.-N. Dauphin, and D. Lopez-Paz mixup: Beyond Empirical
Risk Minimization, ICLR, 2018.
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Traditional Deep Learning Method: RNN-based

Experiment: CNN + Mixup

Loss with mixup

50

Model

Accuracy

CNN + sigmoid (thresholds = 0.5)

0.8215

CNN + sigmoid (thresholds = 0.33)

0.8315 (+0.010)

CNN -+ softmax

0.8295

CNN + softmax + mixup

0.8320 (+0.002)
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Traditional Deep Learning Method: RNN-based

Recurrent Neural Network (RNN)

0 o Oy 1

Tw IW .
<l —) — [l - —
TU Unfold IU I IU

X X Kt

St = f(llxt + Wst—l)

@ s; is calculated based on the current input and the previous time
step's hidden state.

@ f is non-linear transformation

JW., Y.C, Y.L (NYCU) Data Science Final Project February 4, 2024 35 /45




Traditional Deep Learning Method: RNN-based

Long Short Term Memory (LSTM)

: 0
[f:_’.]— C —-(43—~L~ C —»@A»é)—»[hf]

x=[h_1 x]"
fr = o(Wex + by)
it = c(Wix + b;)
or = 0c(Wyox + by)
¢t = fi ®ci_1 + i tanh (W, X + b
hy = oy ® tanh ¢
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Traditional Deep Learning Method: RNN-based

Experiment:

LSTM

LSTM Accuracy

,4”4»xw4ﬁ*‘\*A"Avt :

f

I

/

—e~ training accuracy
validation accuracy

LSTM Loss
=&~ training loss 0825
065 validation loss
0800
0.60 0775
0750
“ 055 g
E b/\ E 0725
]
050 \\.\ 0700
“‘\(‘ 0675
‘\.‘\ -
045 W \**rx 0650
et
0625
0 5 10 15 20 pa) 30 0

epoch

Finally, We get the test accuracy of 0.8130.
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State of The Art Deep Learning Method: Transformer

Transformer

Transformer

JW., Y.C, Y.L. (NYCU)
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State of The Art Deep Learning Method: Transformer

Bidirectional Encoder Representations from Transformers

BERT : Encoder of Transformer #

QOutput
Probabilities

Encoder Feed
Forward

Multi-Head
Attention
Nx

Add & Norm

Masked
Multi-Head

Add & Norm

Add & Norm

Mutti-Head

Attention Atention
L - L -
J
Positional Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

4A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.-N. Gomez, L. Kaiser,

I. Polosukhin, Attention Is All You Need, Computation and Language, 2017.
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State of The Art Deep Learning Method: Transformer

We use pretrain weight in the BERT and connect the linear binary
classifier at the end.

@ Input: sentences

@ Qutput: predicted class

[CLASS] — ( ) — [ Linear Binary Classifier ] — Prediction

My —_—
wife =~ ——
took —| BERT
me - —
here ——

—_—

~—
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Attention Block

o : queries, K: keys, V: values
@ dj is keys of dimension

. QKT
Attention(Q, K, V) = softmax | = | V
Vi
Scaled Dot-Product Attention Multi-Head Attention

Mask (opt.)

Q K
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Experiment: BERT

BERT Loss BERT Accuracy
—e— training loss 100
07 validation loss
06 085
05
” \ fellx
0 04 c
< g
=1
03 *
085
02
080
o1
—e— training accuracy
validation accuracy
0o
[ 2 H [ [ ] 2 4 6 B
epoch epoch

Finally, We get the test accuracy of 0.8550.
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Conclusion

Conclusion

In this project, we implement machine learning methods and deep learning
methods. The deep learning model gets good performance. We compared

the result as follow:

o Machine Learning method:

Method Naive Bayes | Tree-based | SVM
Accuracy 0.7240 0.8040 0.8285
o Deep Learning method:
Model CNN (with mixup) | LSTM | BERT
Accuracy 0.8320 0.8130 | 0.8550
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Conclusion

Conclusion

In this project, we implement machine learning methods and deep learning
methods. The deep learning model gets good performance. We compared
the result as follow:

o Machine Learning method:

Method Naive Bayes | Tree-based | SVM
Accuracy 0.7240 0.8040 0.8285

o Deep Learning method:

Model CNN (with mixup) | LSTM | BERT
Accuracy 0.8320 0.8130 | 0.8550

Machine learning methods are more explainable but deep learning method
like black boxes. At the recent, many research start to develop
Explainable Al. So, we can develop towards this research topic in the

future.
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|
THE END

Thanks for listening]!
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