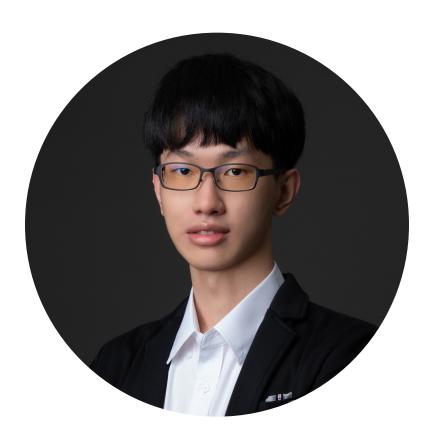
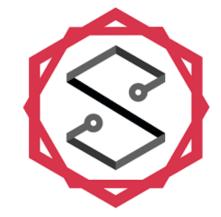
How Can We "Perfectly and Rapidly" Stitch Images? **Exploring Improved End-to-end Techniques**

Jing-En Huang

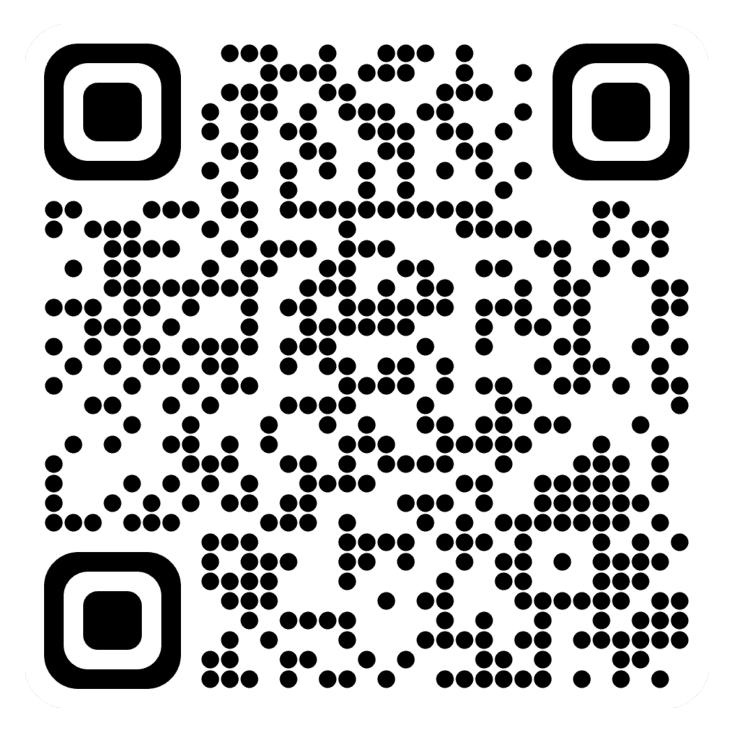
- Co-work with Ku-Te Lin, Yu-Ju Tsai, and Mei-Heng Yueh sciwork 2023 December 10, 2023



Jia-Wei Liao



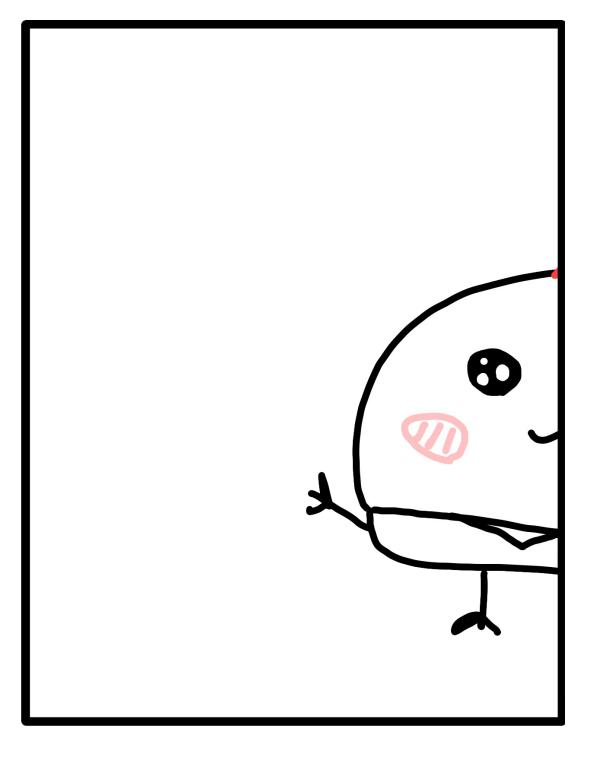
Before We Start

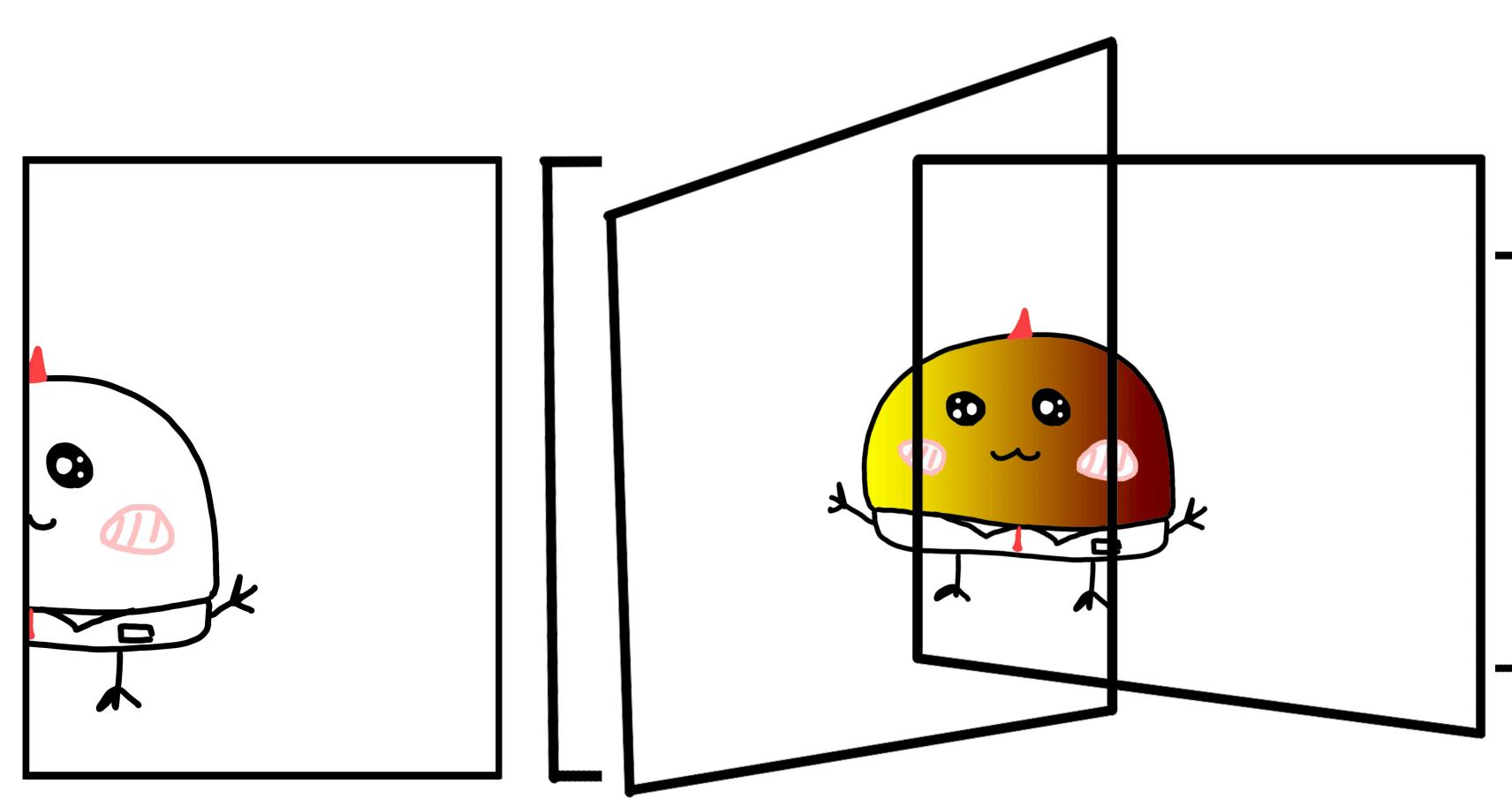


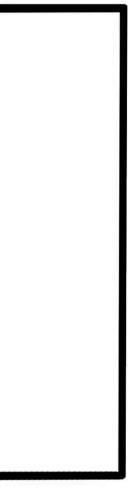
Slido

Slides

Introduction to Image Stitching

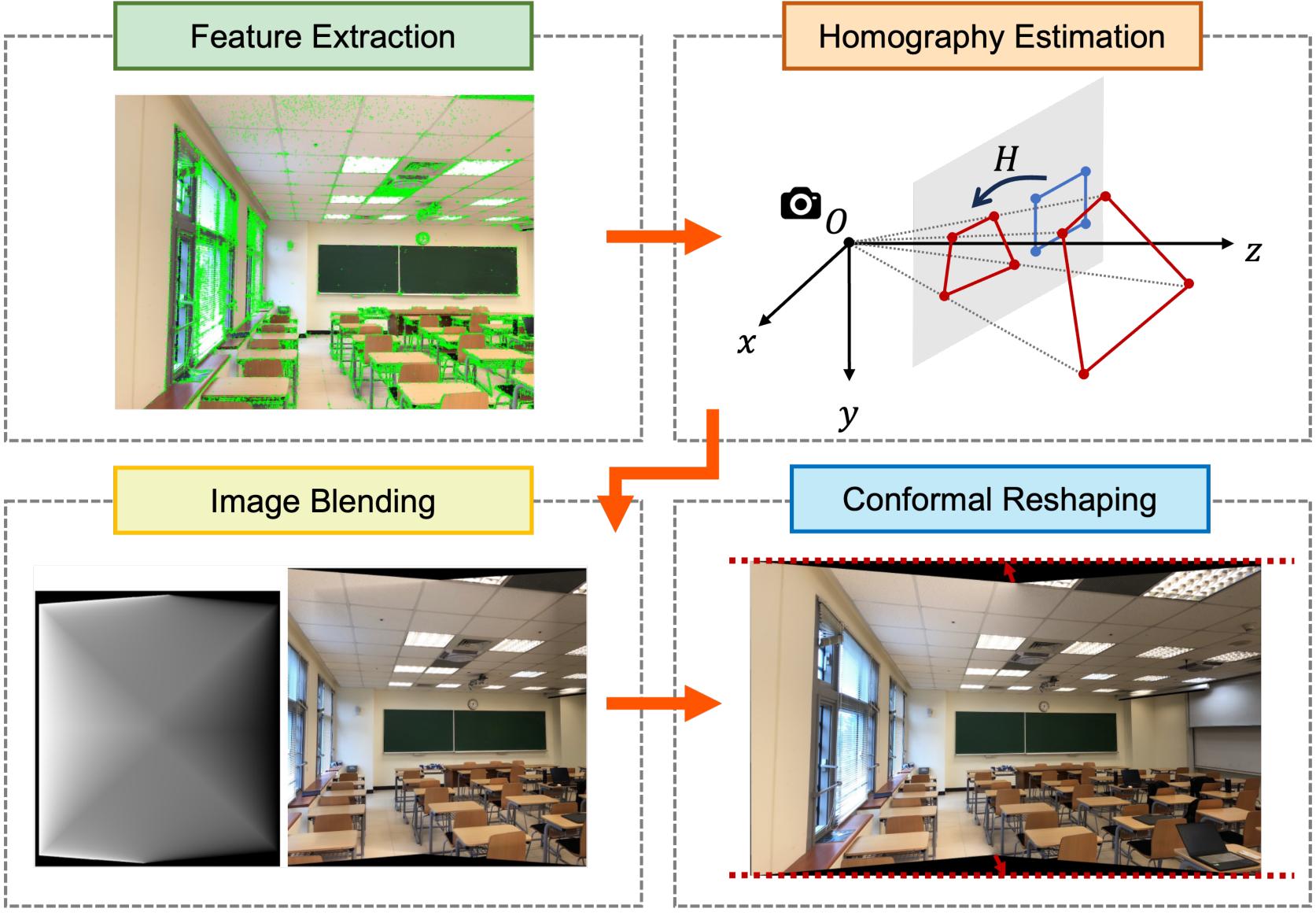




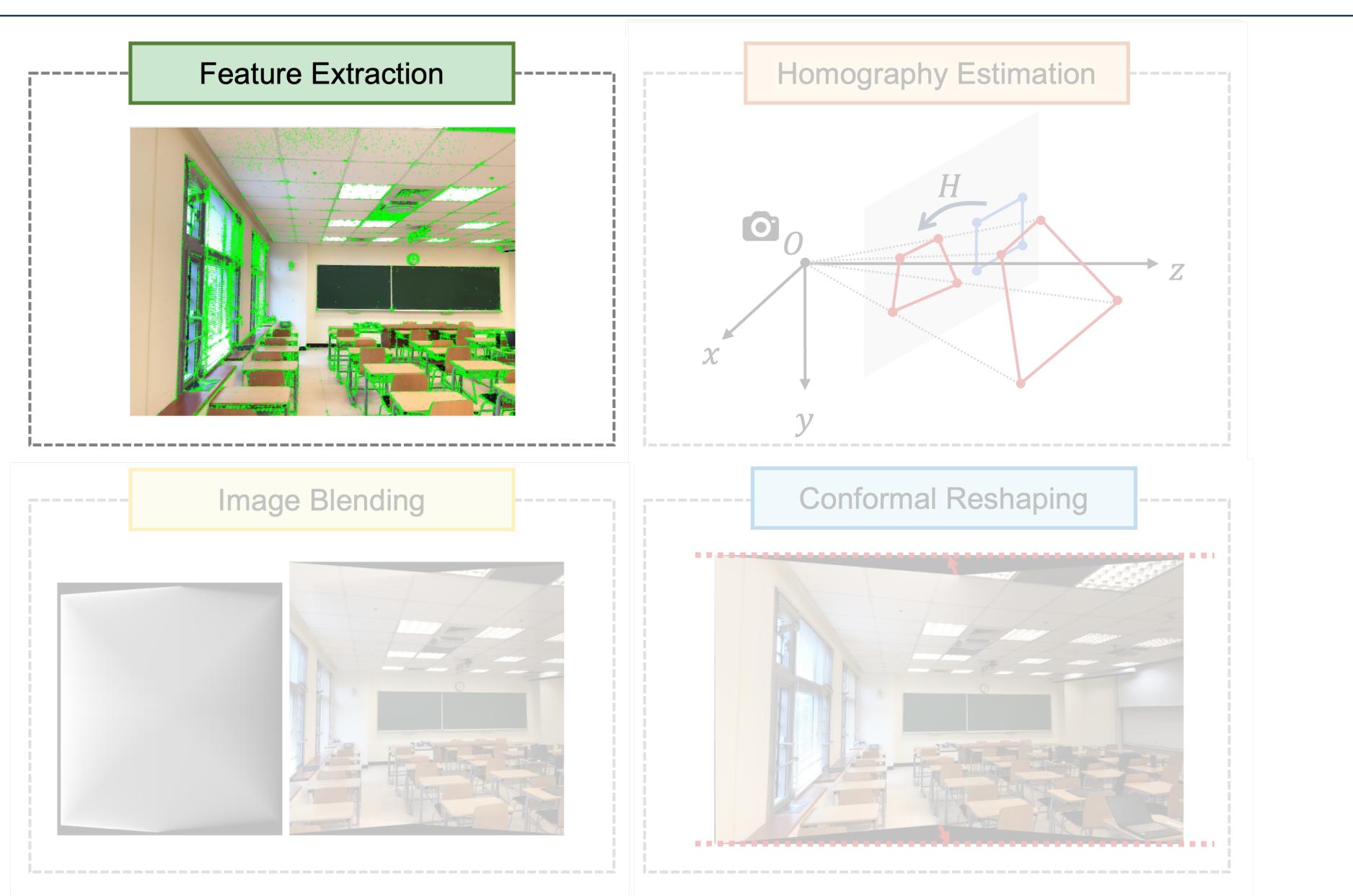


Case Study

End-to-End Image Stitching Pipeline



Feature Extraction

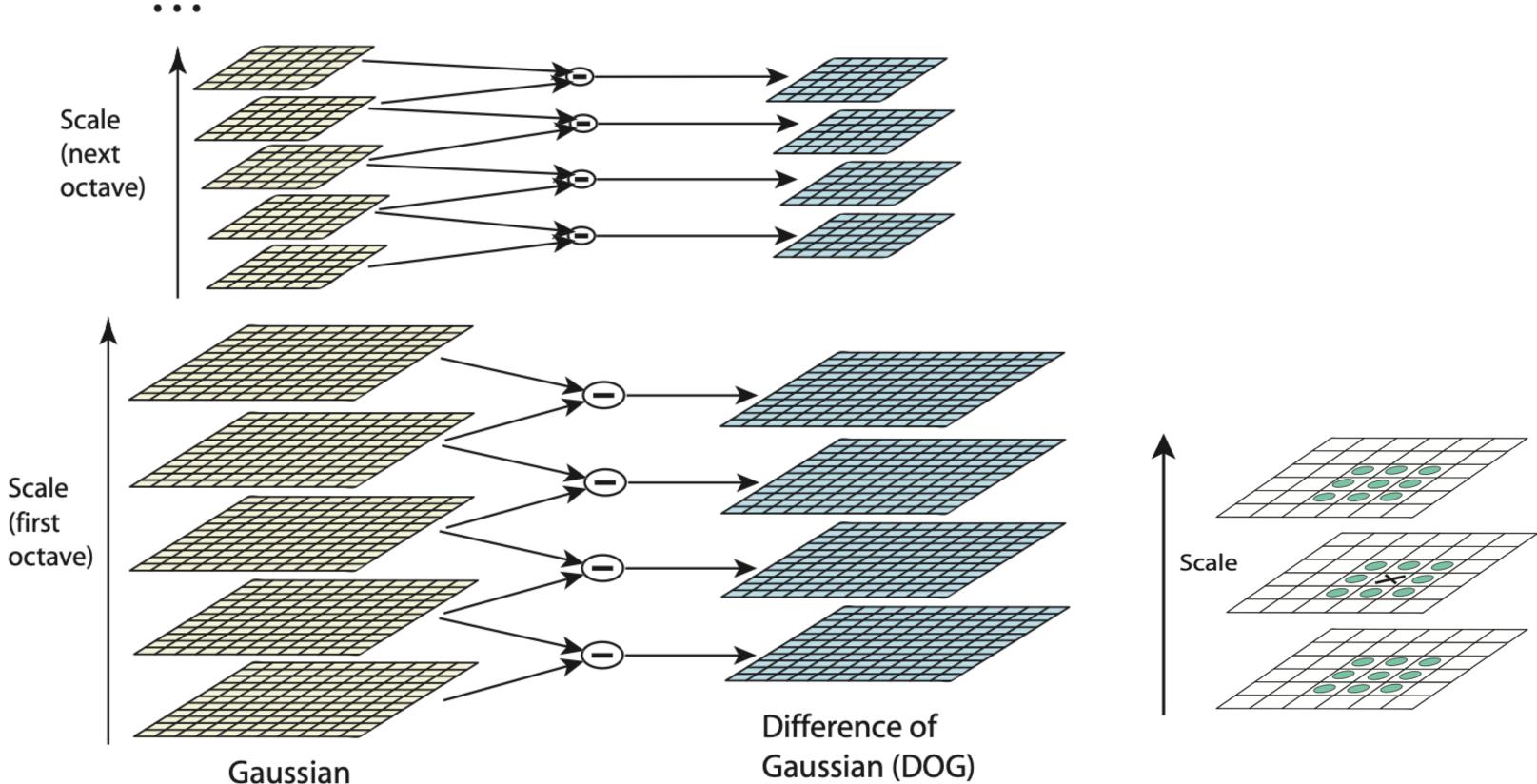


Feature Extraction: SIFT

The Scale-Invariant Feature Transform (SIFT)

Feature Extraction: SIFT

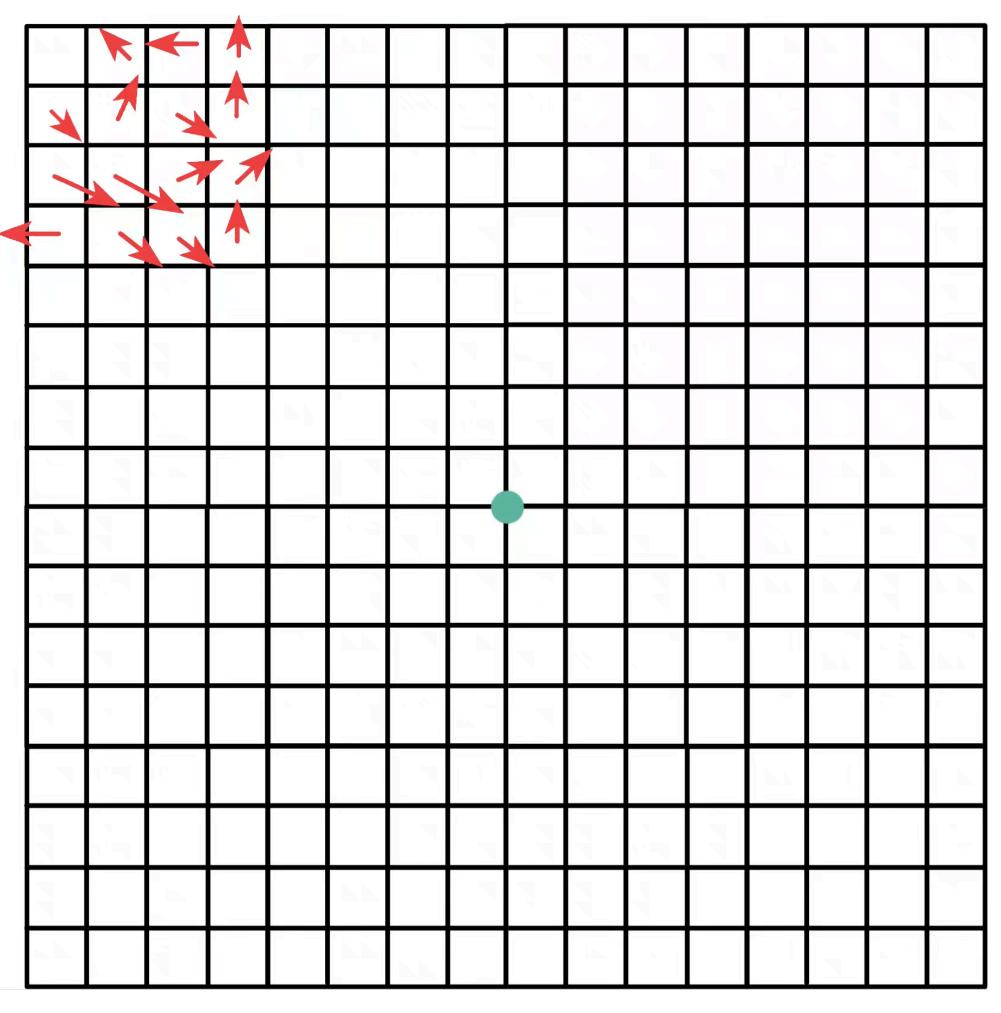
The Scale-Invariant Feature Transform (SIFT) has the following two steps: 1. **Detection**: Extract key points.



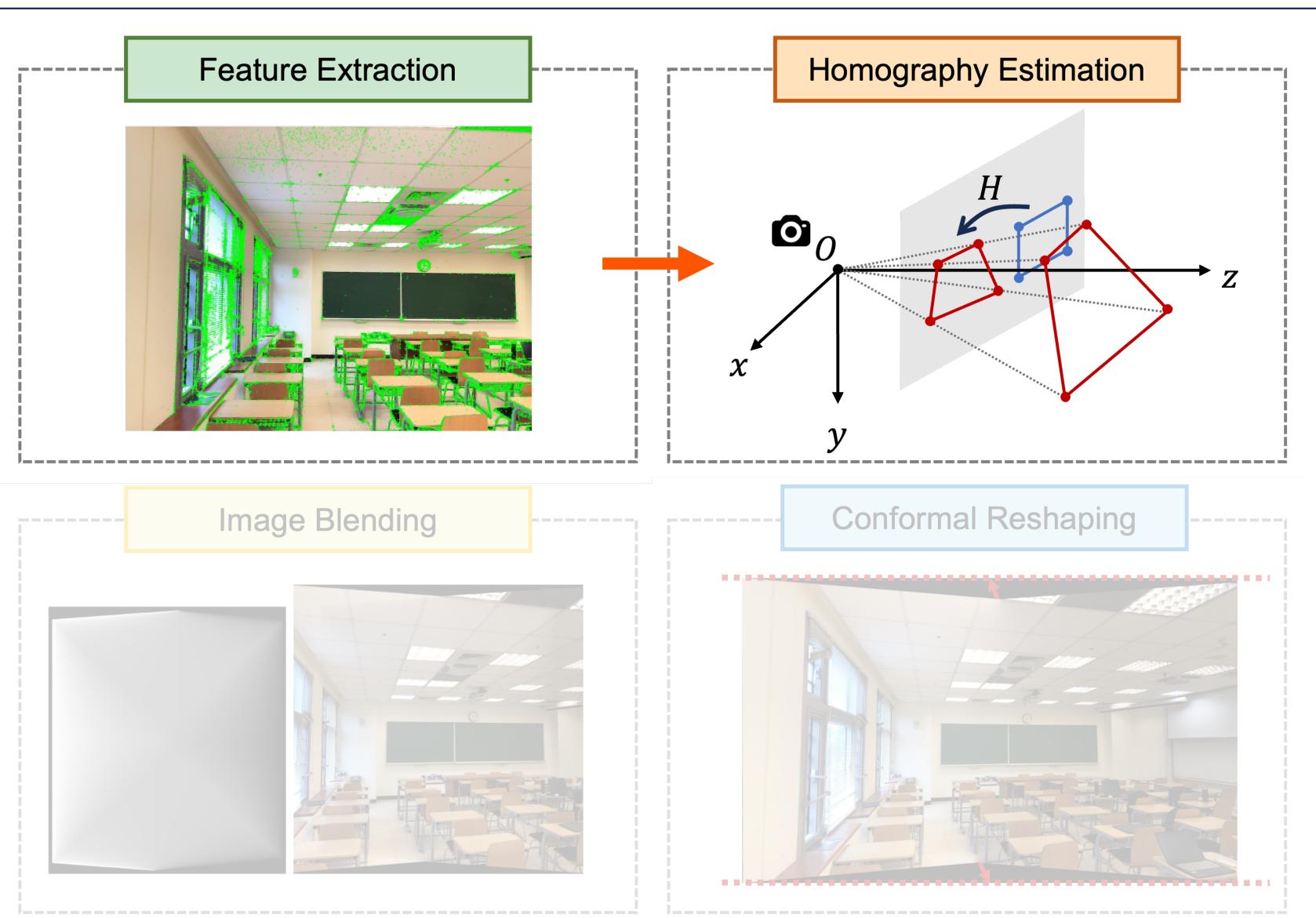
Gaussian

Feature Extraction: SIFT

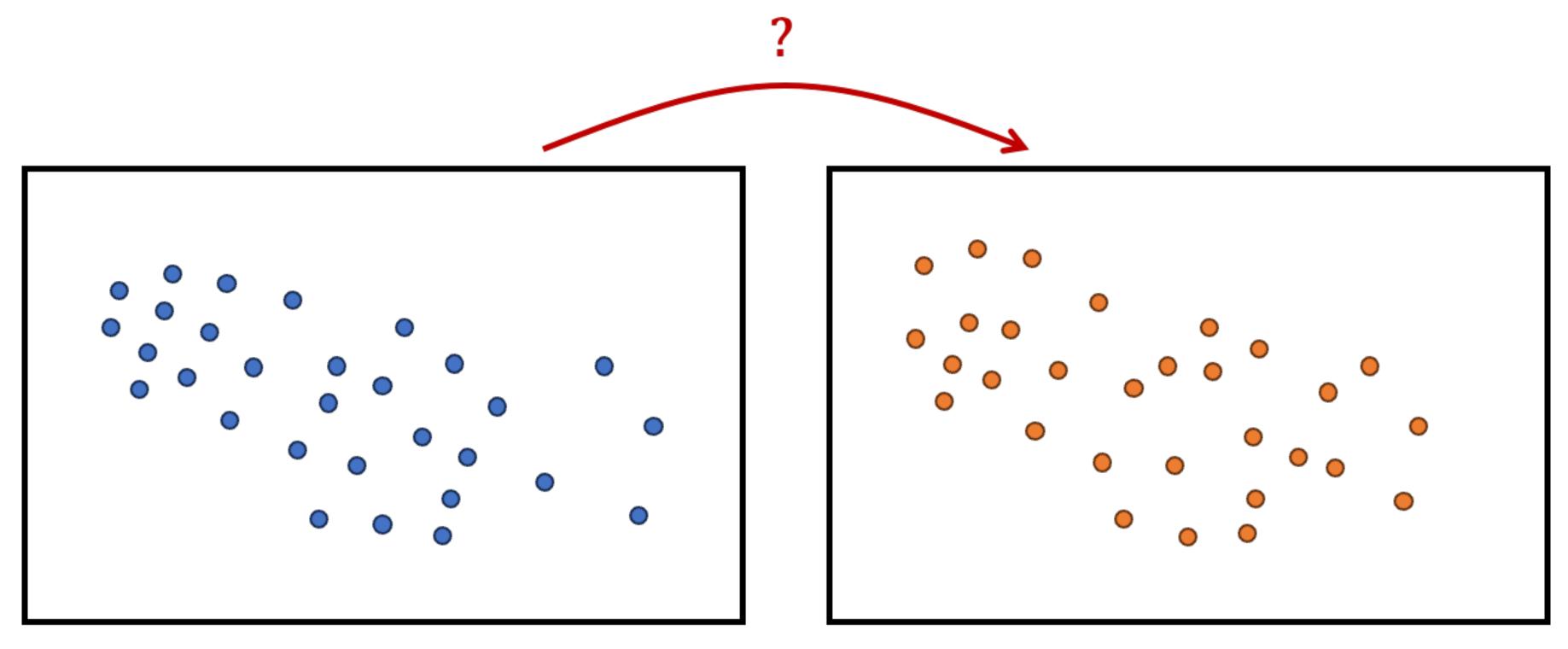
The Scale-Invariant Feature Transform (SIFT) has the following two steps: 2. **Description**: Extract the feature vector for each key point.



Homography Estimation



Homography Estimation



source points \mathbf{p}_{S}

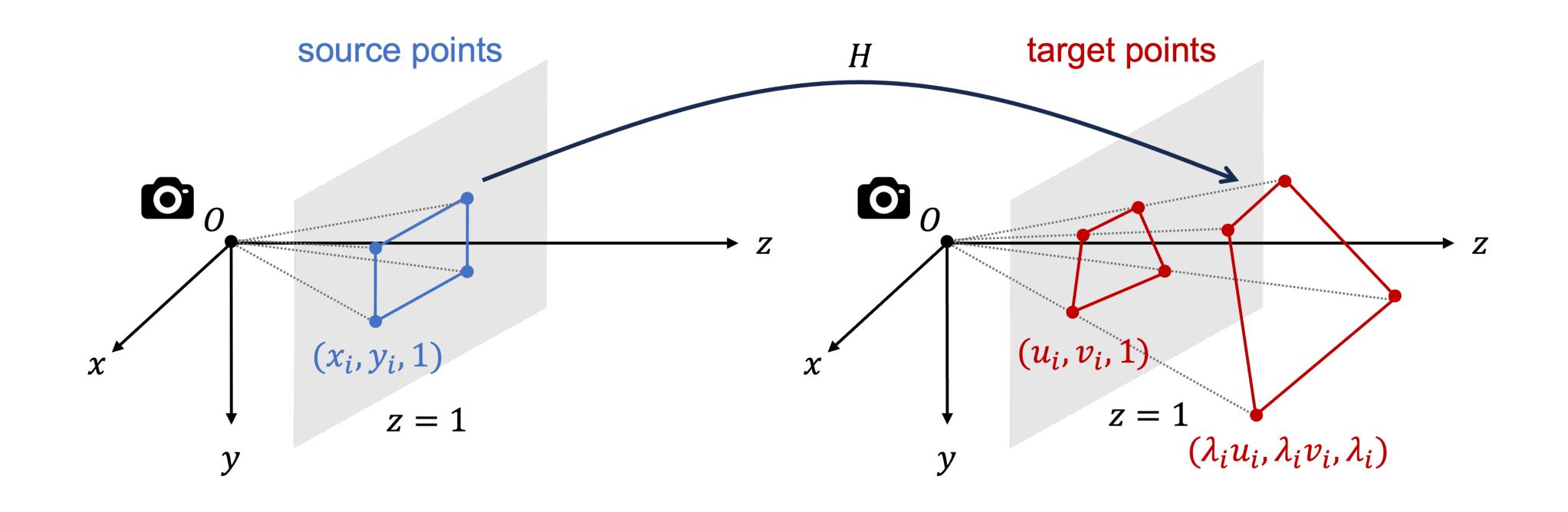
target points \mathbf{p}_T

11

Homography Estimation: Camera Model

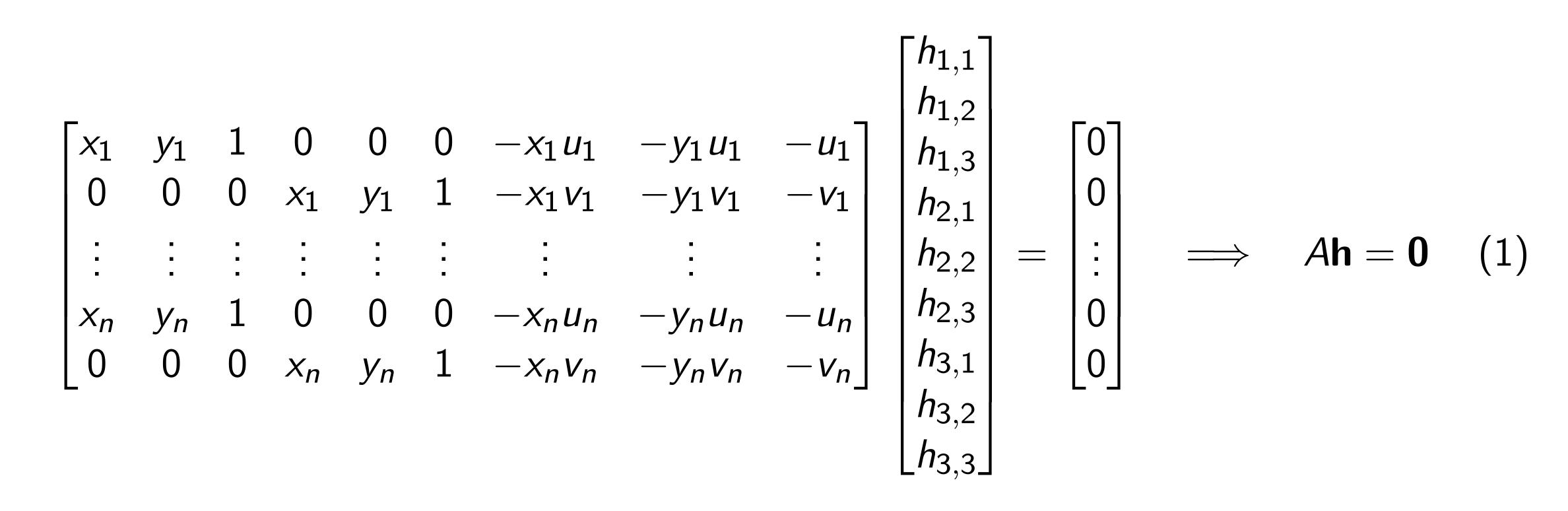
Given source points $\{(x_i, y_i)\}_{i=1}^n$ and target points $\{(u_i, v_i)\}_{i=1}^n$, the goal is to find the homography matrix mapping each source point to its corresponding target point.

$$\lambda_{i} \begin{bmatrix} u_{i} \\ v_{i} \\ 1 \end{bmatrix} = \begin{bmatrix} h_{1,1} & h_{1,2} & h_{1,3} \\ h_{2,1} & h_{2,2} & h_{2,3} \\ h_{3,1} & h_{3,2} & h_{3,3} \end{bmatrix} \begin{bmatrix} x_{i} \\ y_{i} \\ 1 \end{bmatrix}, \quad \lambda_{i} > 0, \quad i = 1, 2, ..., n$$



Homography Estimation: Linear System

We formulate homography as a $2n \times 9$ linear system:



• The degrees of freedom of **h** are 8, requiring at least 4 points.

Fact

Homography Estimation: Least Squares Problem

The linear system defined in (1) is reformulated as a least squares problem:

 $\min_{\|\mathbf{h}\|_2=1}$

Fact

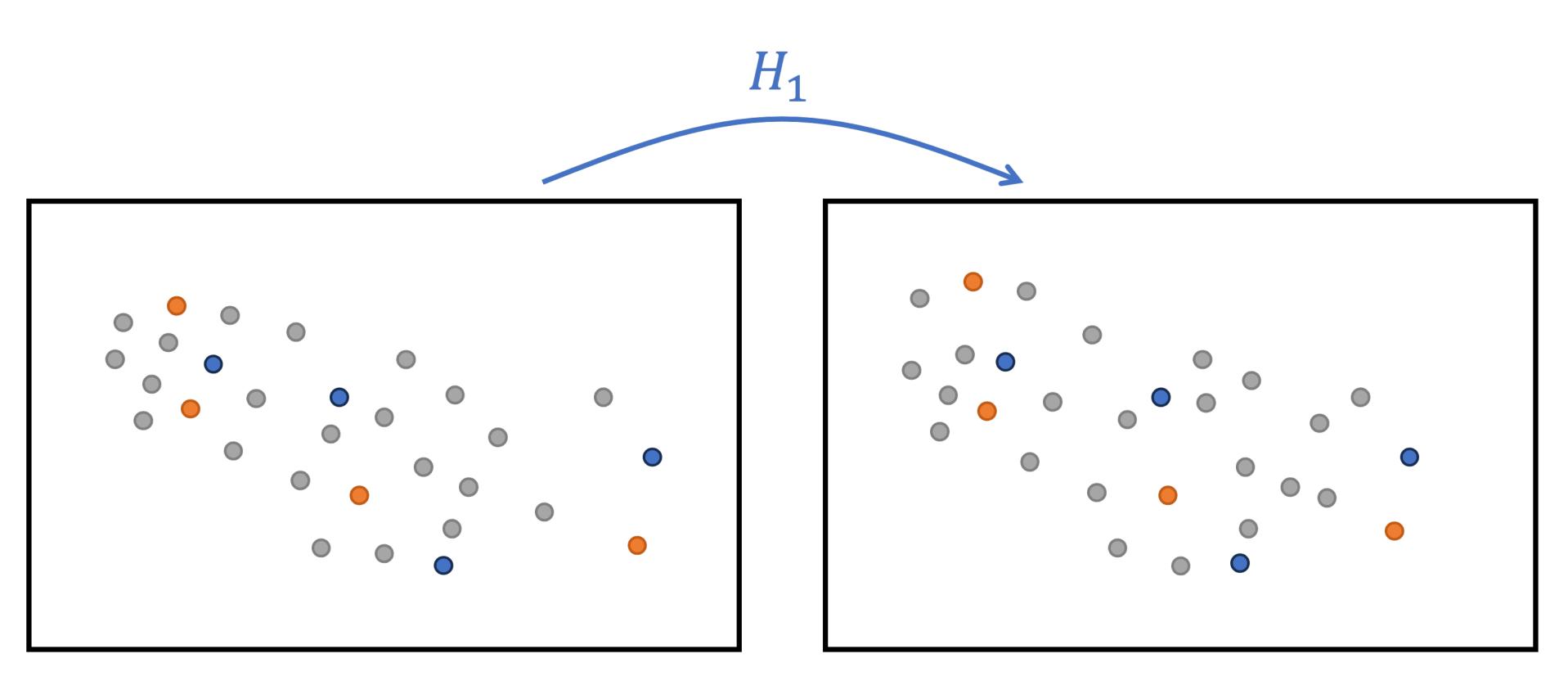
- h is subject to arbitrary scaling, we in optimization formulation.
- The solution of (2) is the unit eigenv eigenvalue.

$$||A\mathbf{h} - \mathbf{0}||_2^2.$$

• h is subject to arbitrary scaling, we incorporated the length constraint of 1 into the

• The solution of (2) is the unit eigenvector of $A^{\top}A$ associated with its smallest

Homography Estimation: RANSAC



source points \mathbf{p}_S

target points \mathbf{p}_T

Inlier error: $||H_2 \mathbf{p}_S - \mathbf{p}_T||_2 > ||H_1 \mathbf{p}_S - \mathbf{p}_T||_2$

Stitching Result of Two Images

Figure: Stitching results of SIFT

Stitching Result of Two Images

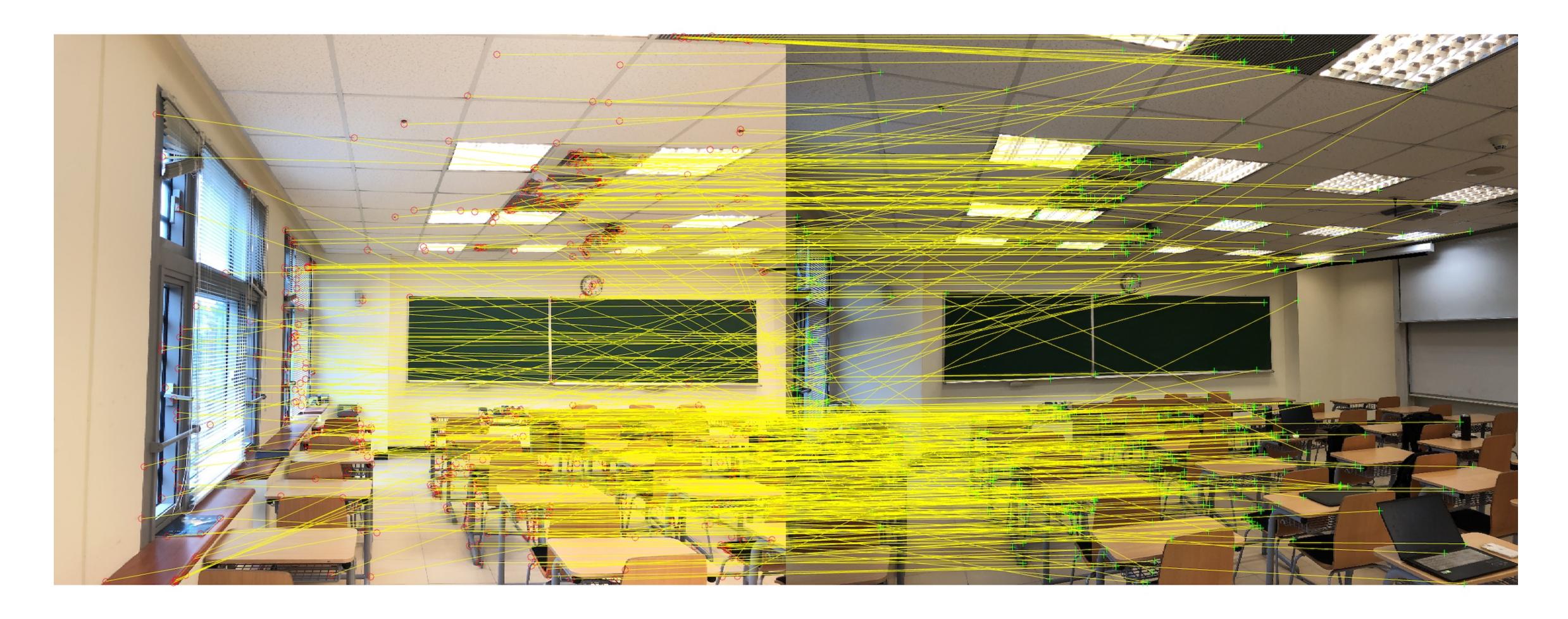
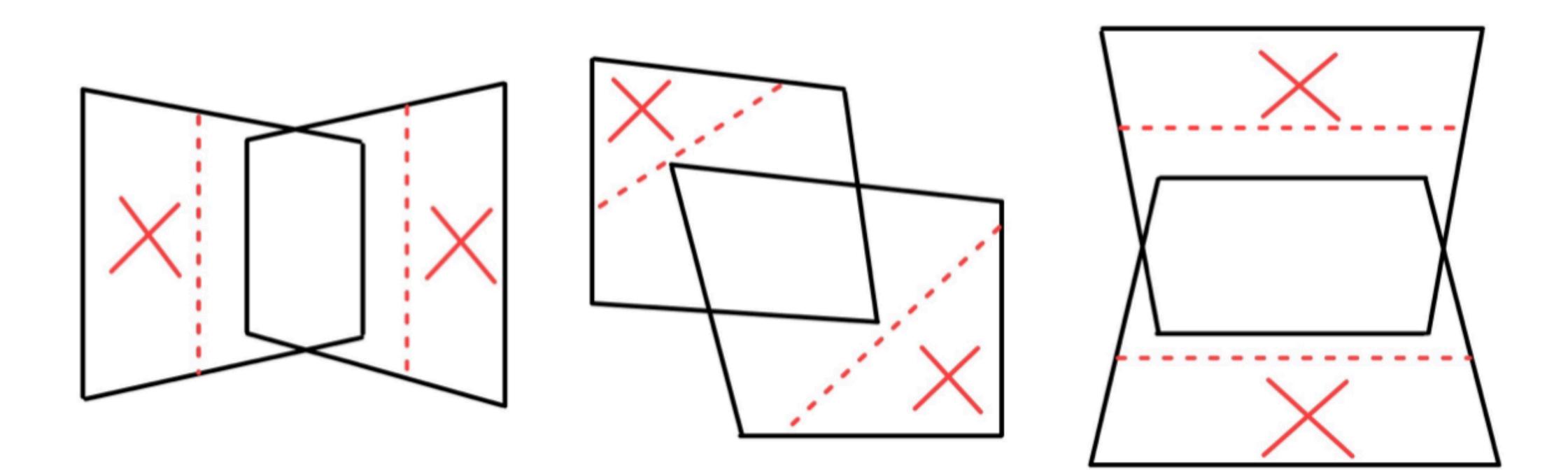
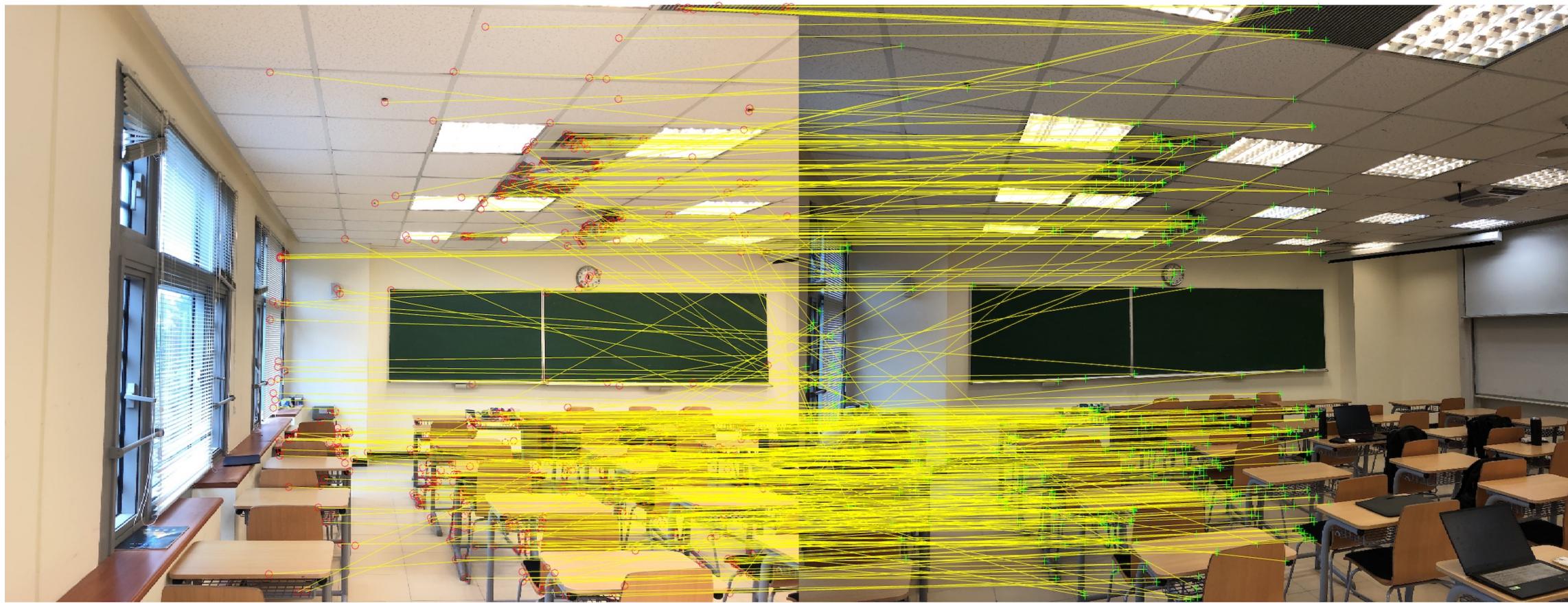


Figure: Matching results of SIFT

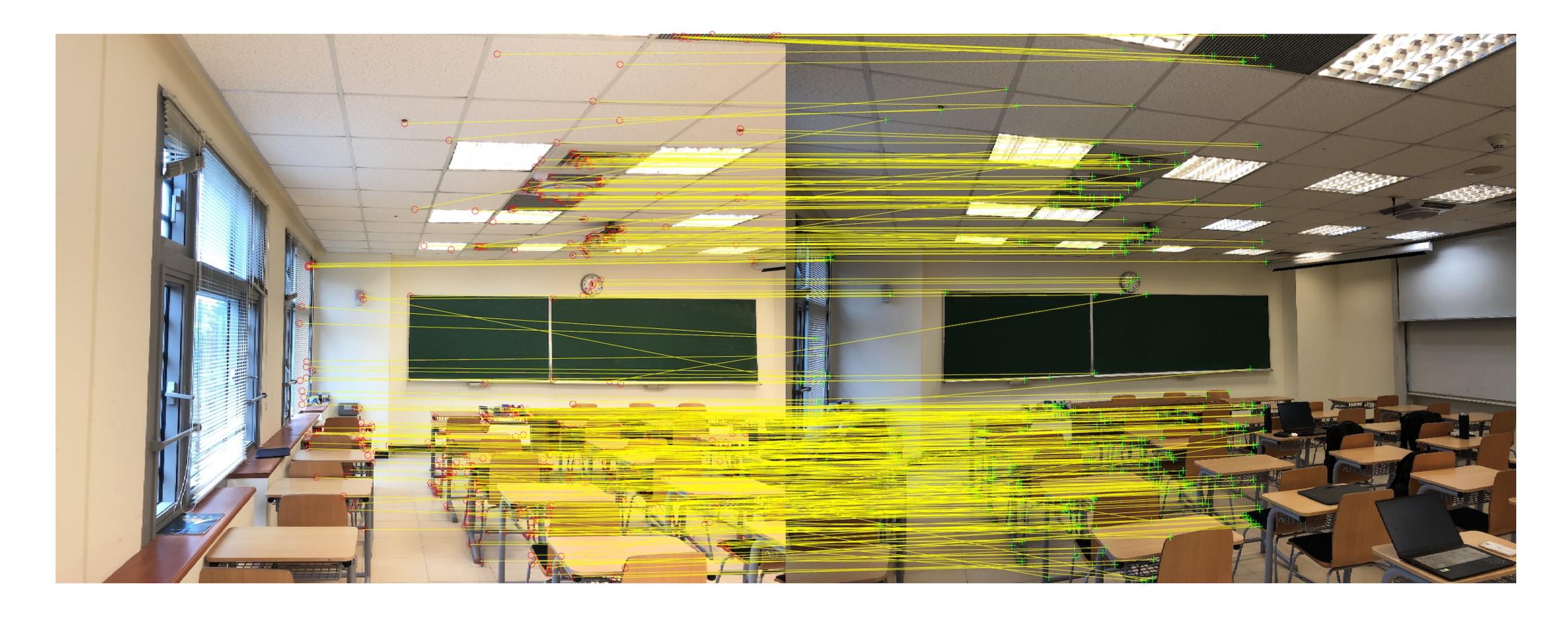
1. Discard irrelevant points.



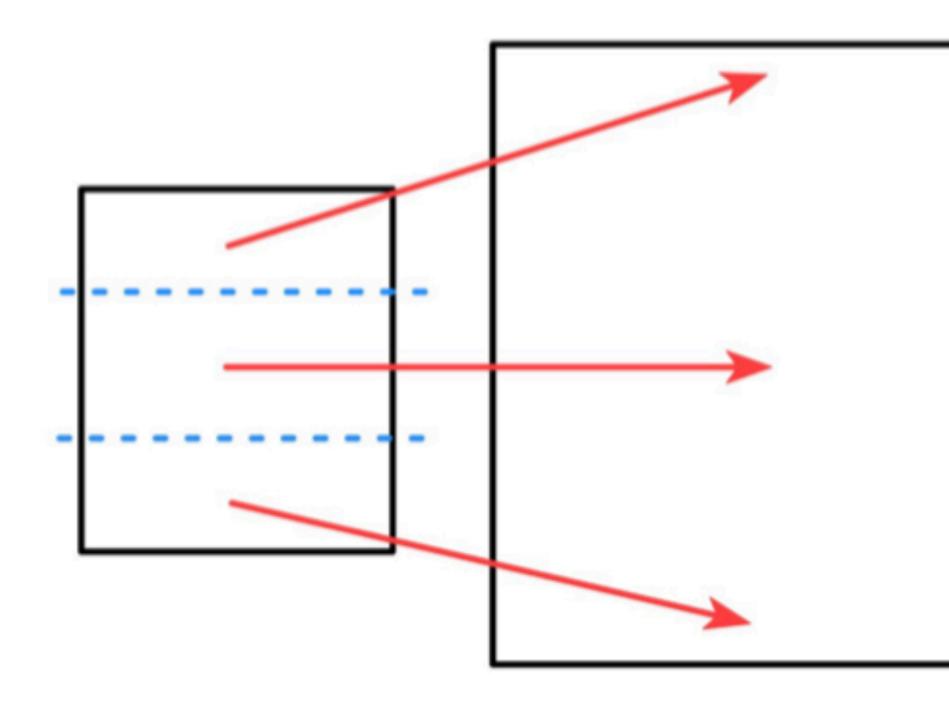
1. Discard irrelevant points.

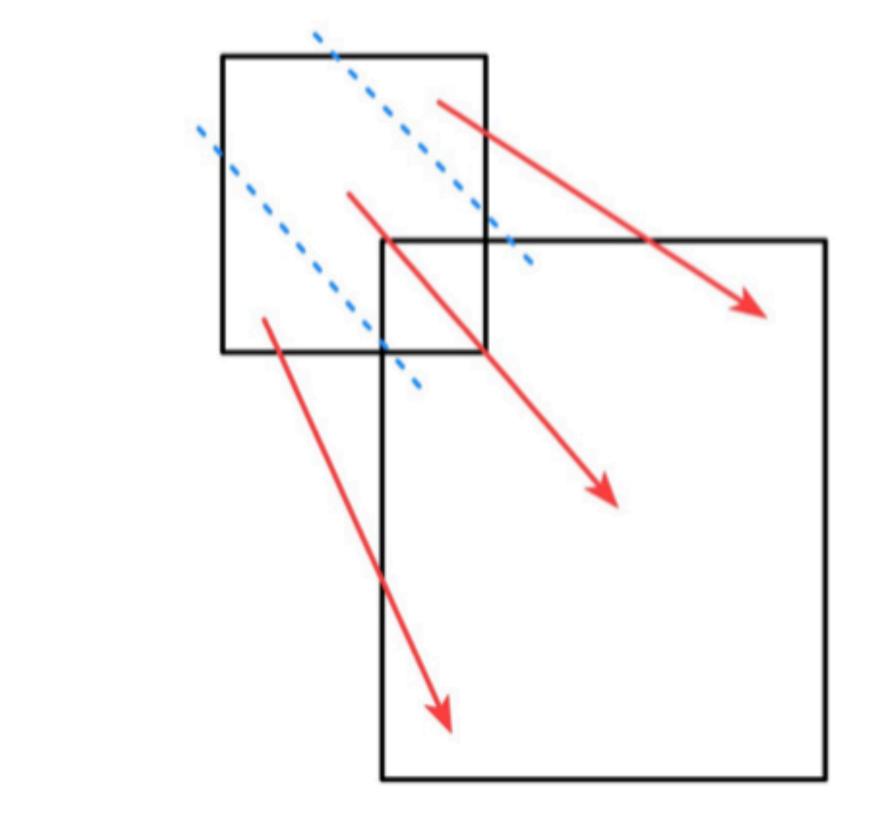


2. Filter out pairings with excessive slope.

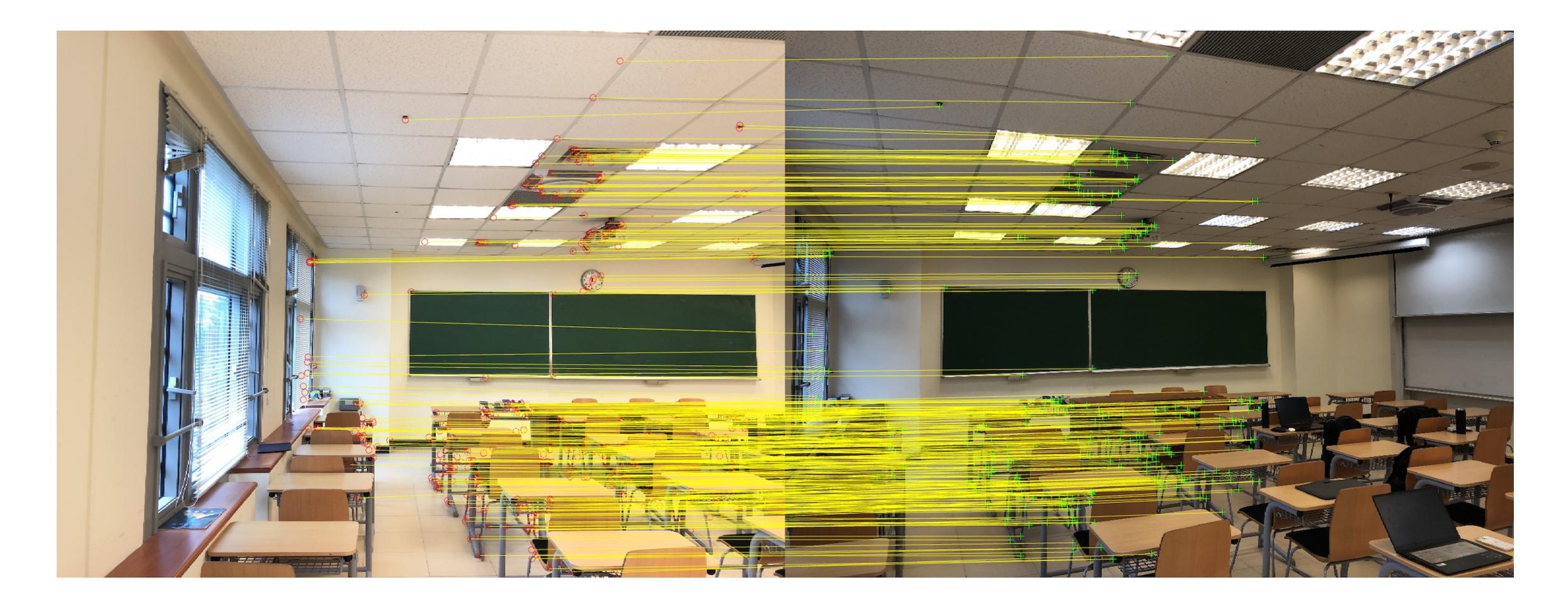


3. Segment matched pairs into three parts and reapply slope filtering.





3. Segment matched pairs into three parts and reapply slope filtering.



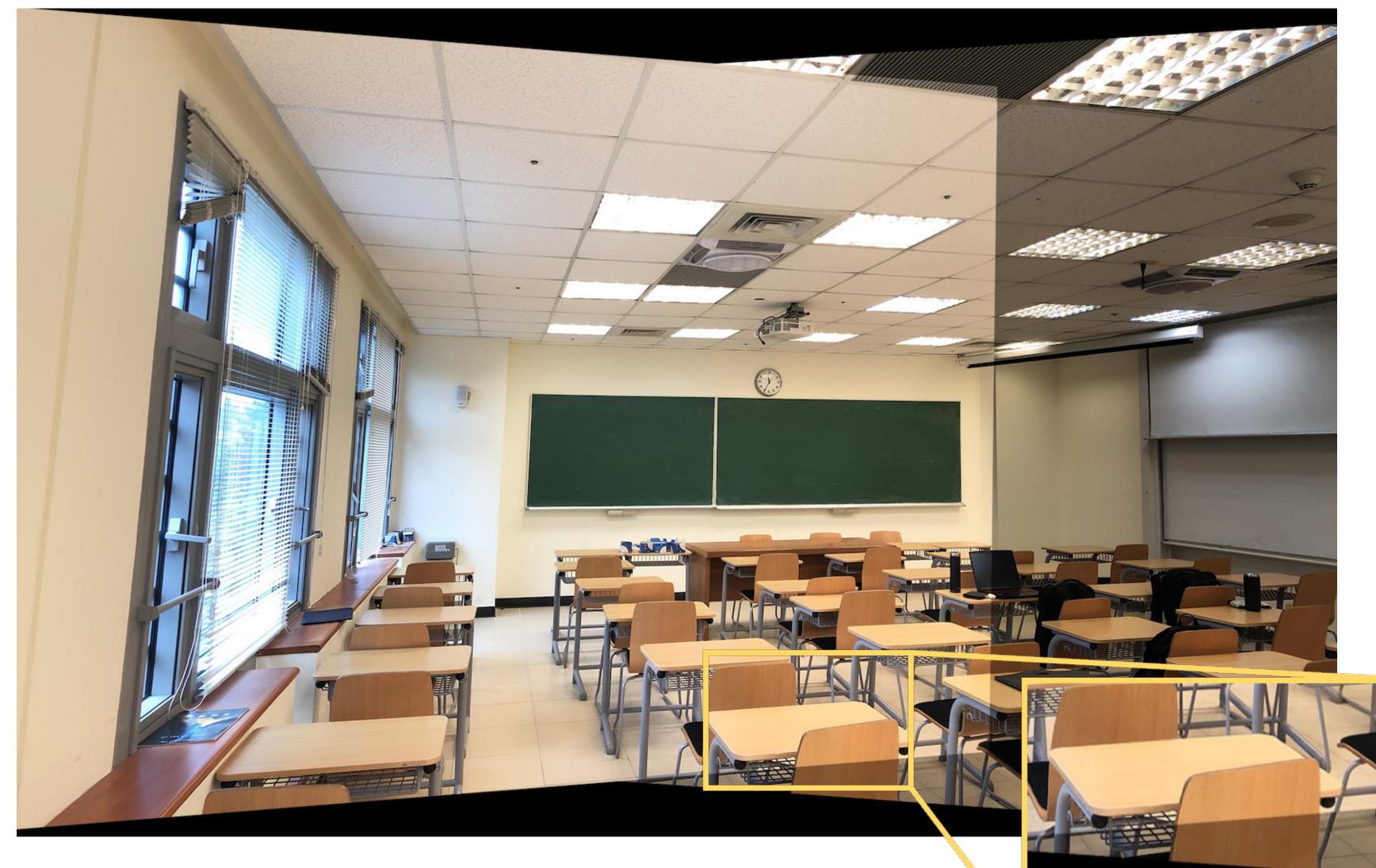
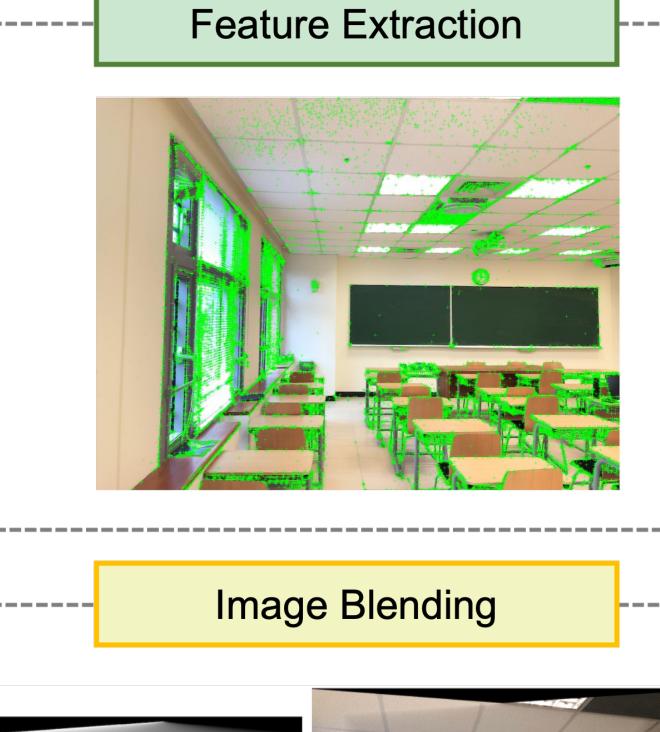


Figure: Perfect matching results

Image Blending



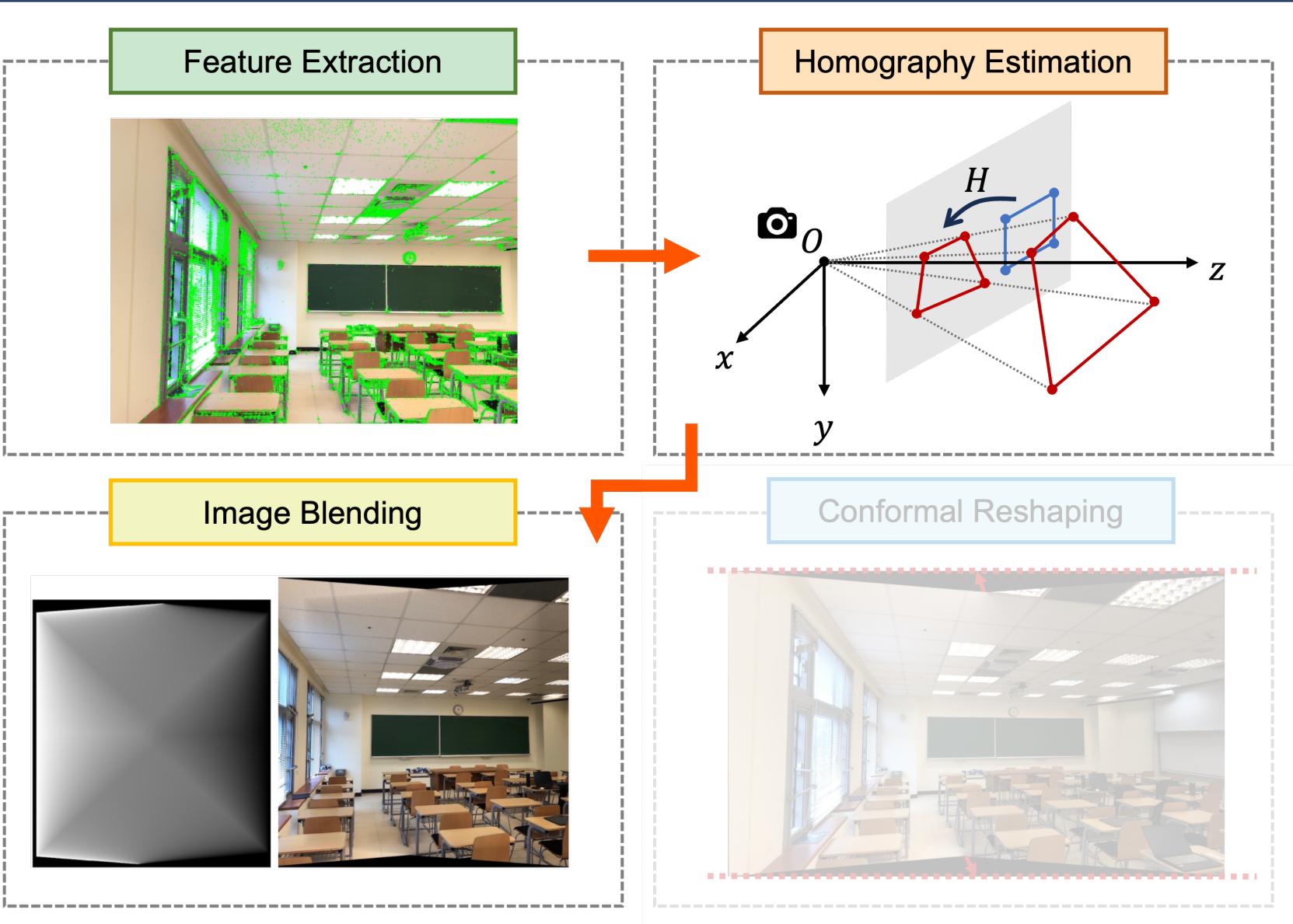
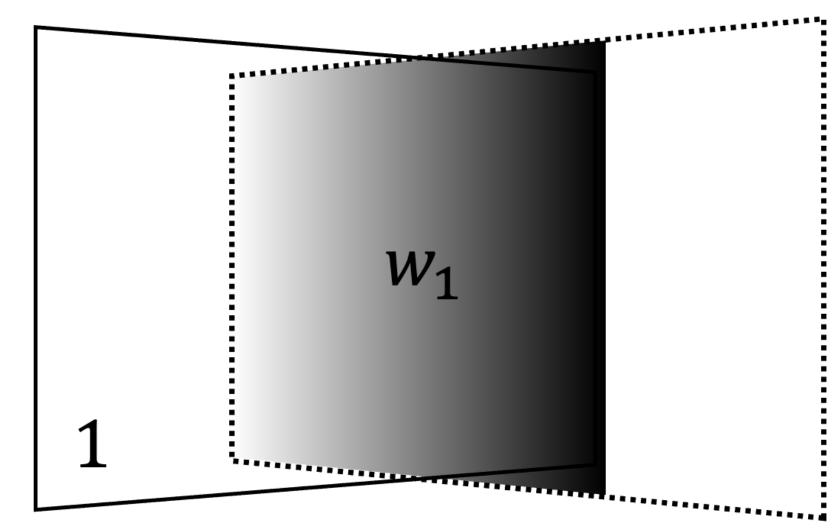


Image Blending

I_1



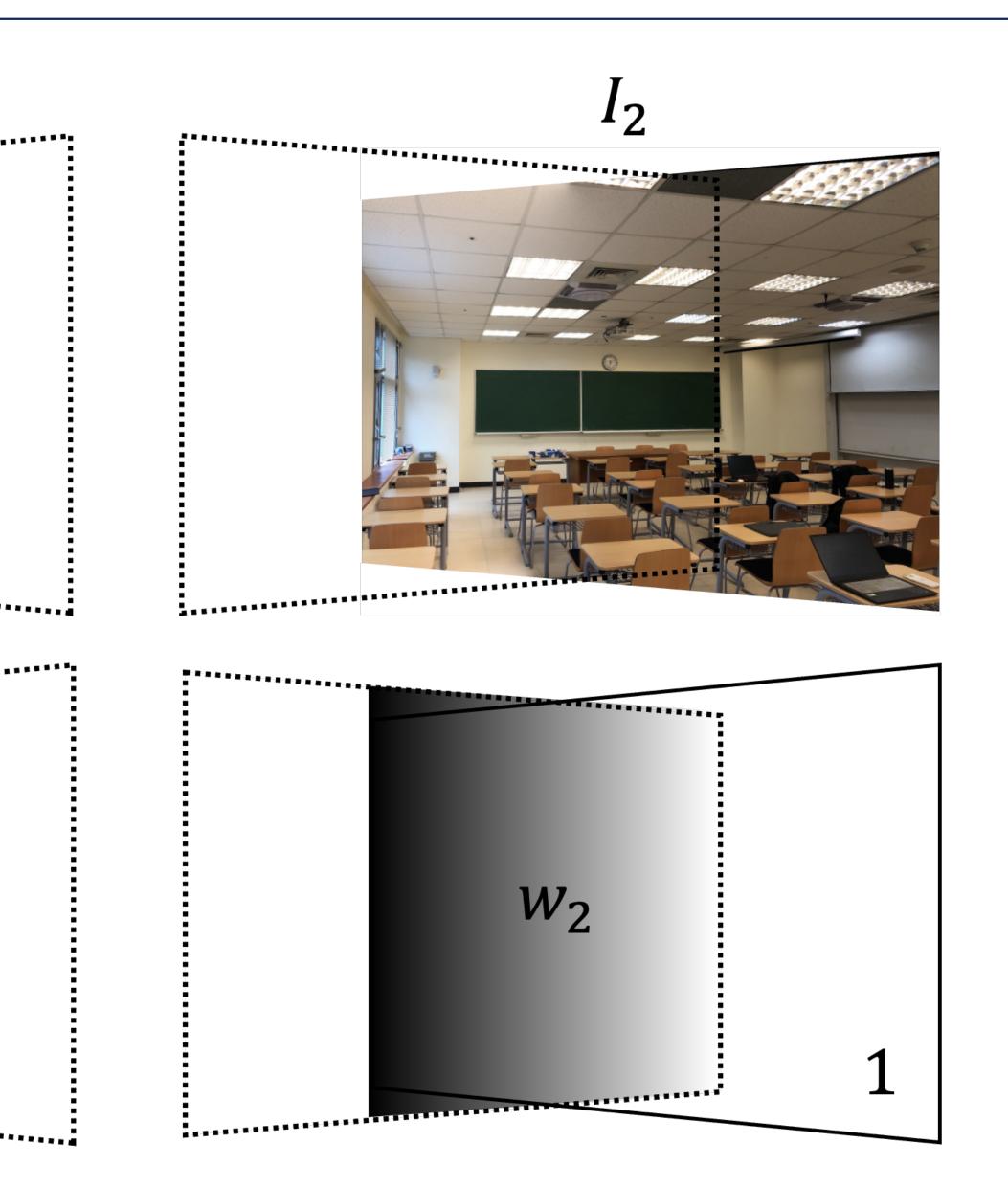


Image Blending: Continuous Mask

Define image mask functions $w_1, w_2 : \Omega \rightarrow [0, 1]$ as:

$$w_1(p) = rac{d_2(p)}{d_1(p) + d_2(p)}, \ w_2(p) = rac{d_1(p)}{d_1(p) + d_2(p)},$$

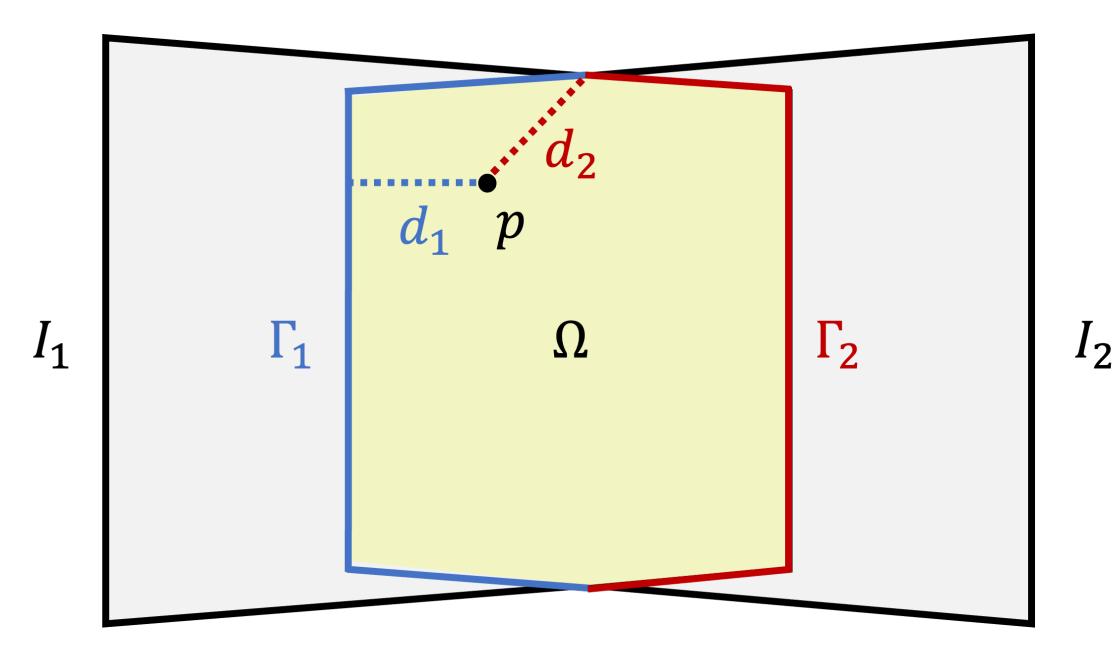
where

$$d_1(p) = \min_{p \in \Omega} \{ \|p - q\| \mid q \in \Gamma_1 \},$$

 $d_2(p) = \min_{p \in \Omega} \{ \|p - q\| \mid q \in \Gamma_2 \}.$

The blended image I' is then calculated as:

$$I'(p) = w_1(p)$$



 $\cdot I_1(p) + w_2(p) \cdot I_2(p).$

Result of Image Blending with Continuous Mask

Image Blending: Poisson Equation

derived from the Poisson equation under specified boundary conditions:

$$\begin{cases} \Delta w = 0 \text{ in } \Omega \setminus (\Gamma_1 \cup \Gamma_2), \\ w \mid_{\Gamma_1} = 1, w \mid_{\Gamma_2} = 0. \end{cases}$$

The blended image I' is then calculated as:

$$I'=w\cdot I_1+(1-w)\cdot I_2.$$

Define $w: \Omega \rightarrow [0,1]$ as the image mask function. The smooth blending function is

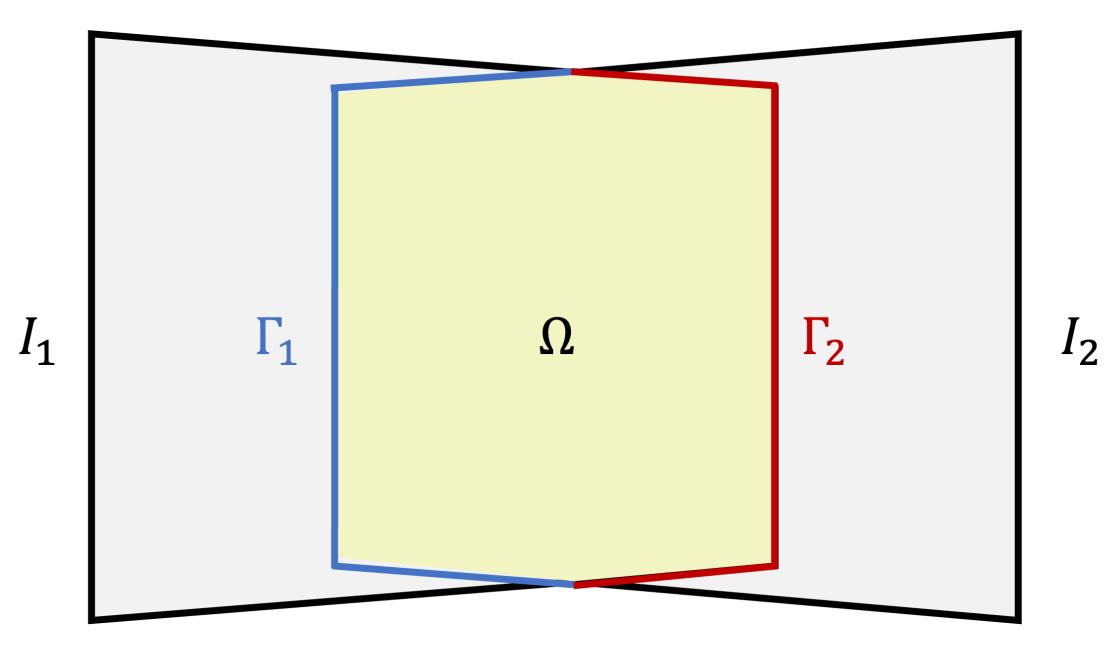
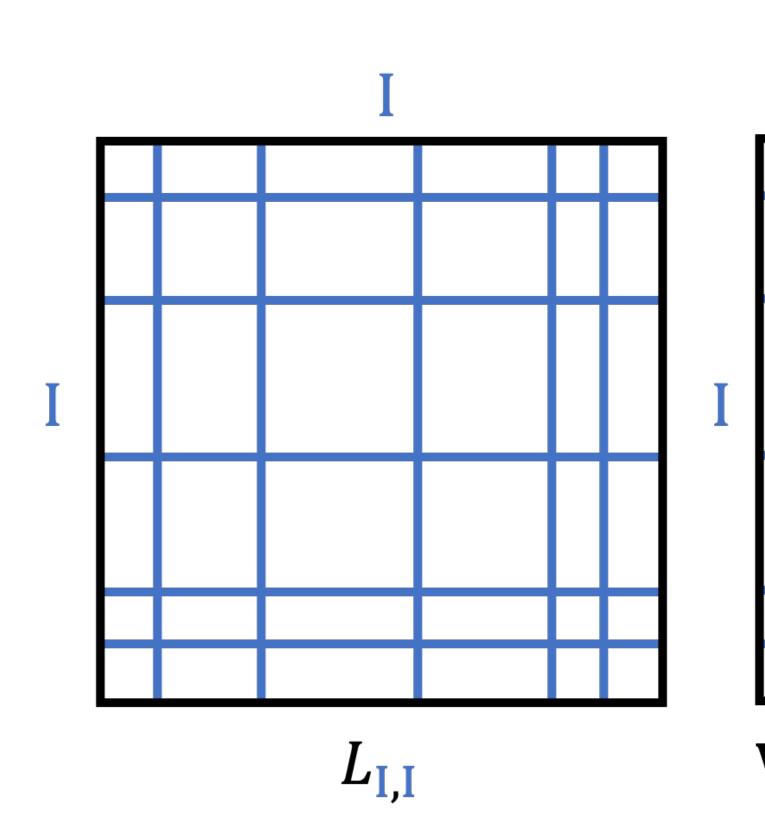
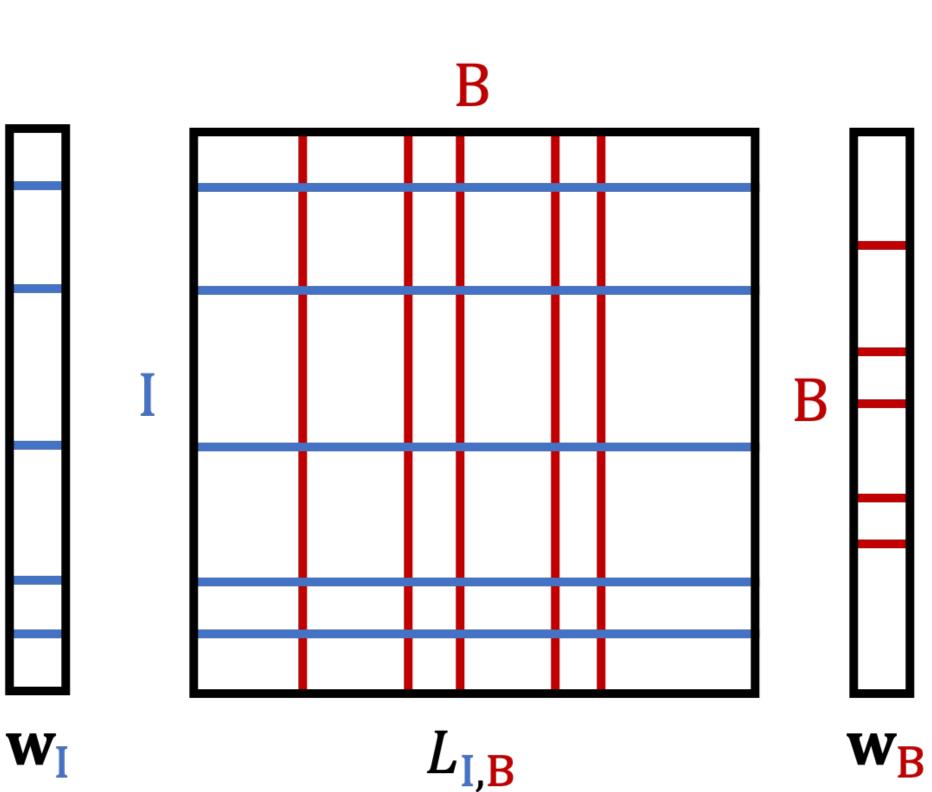


Image Blending: Poisson Equation

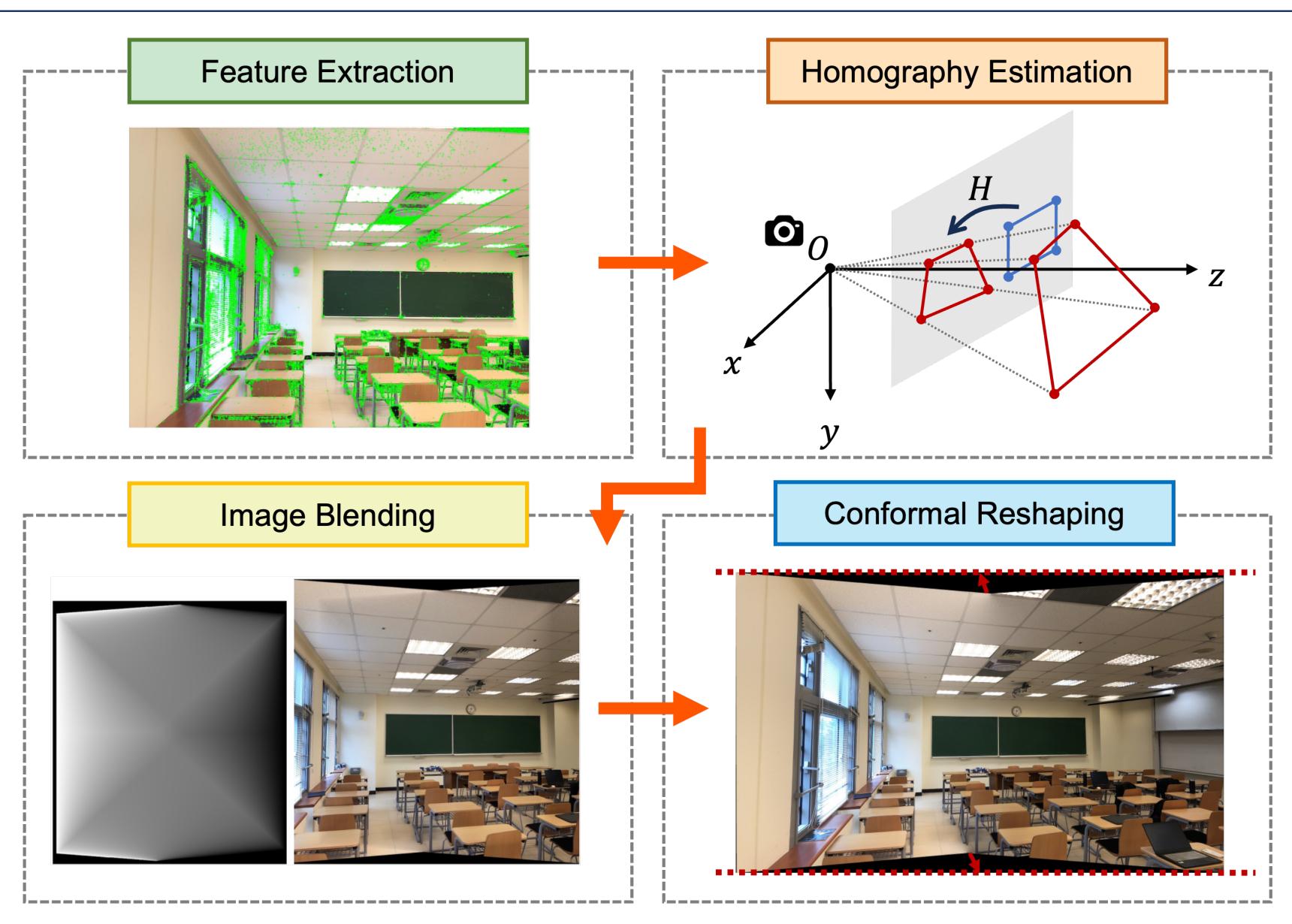
Let L be the Lattice Laplacian matrix and \mathbf{w} be the weight vector. Segregate the point indices into interior I and boundary B. The Poisson's equation can express to the following linear system:

 $L_{\mathrm{I},\mathrm{I}}\mathbf{w}_{\mathrm{I}} = -L_{\mathrm{I},\mathrm{B}}\mathbf{w}_{\mathrm{B}},$

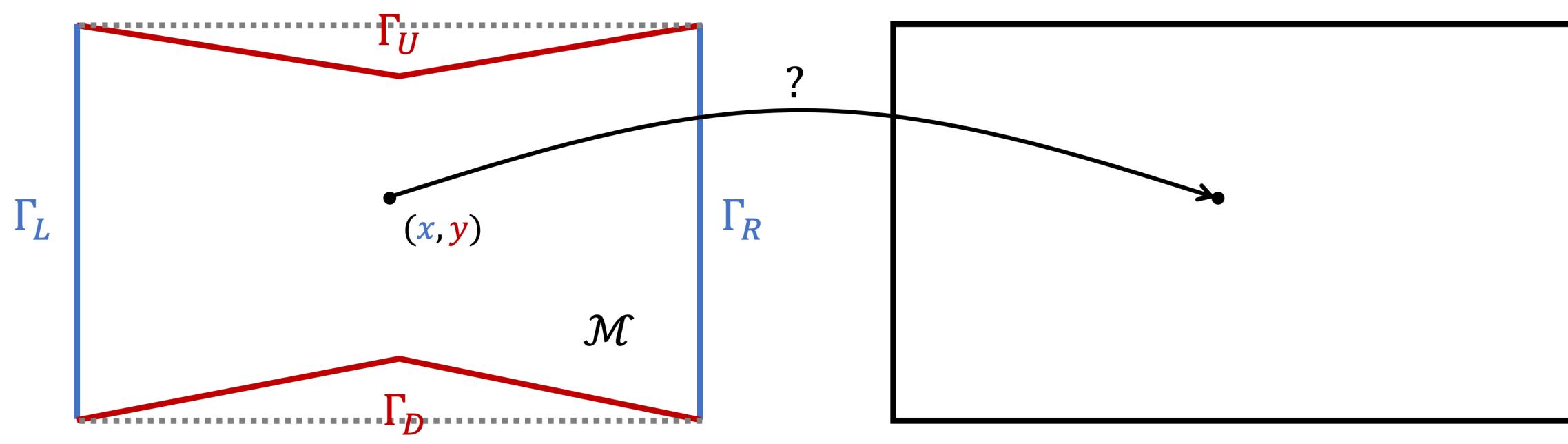


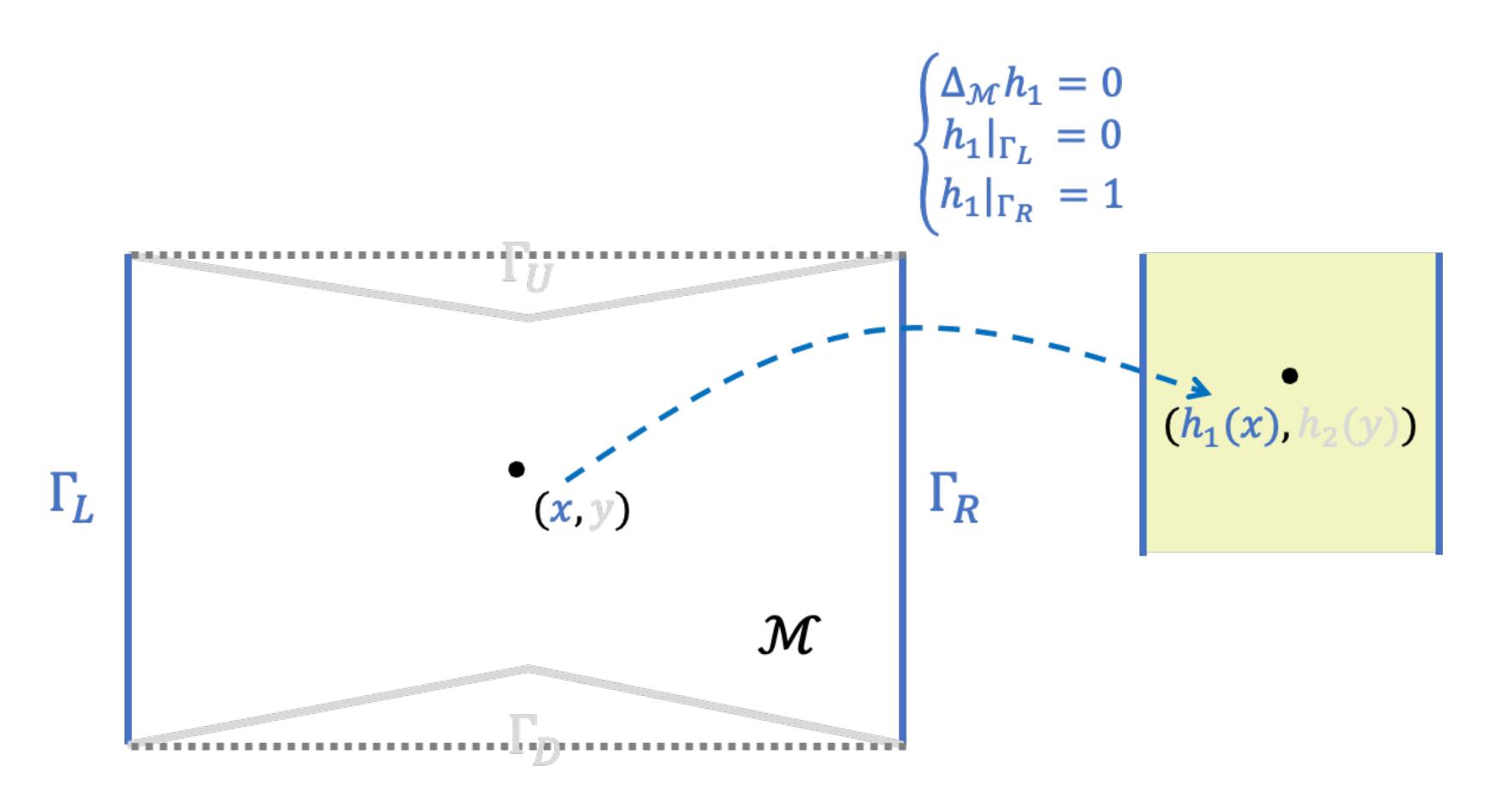


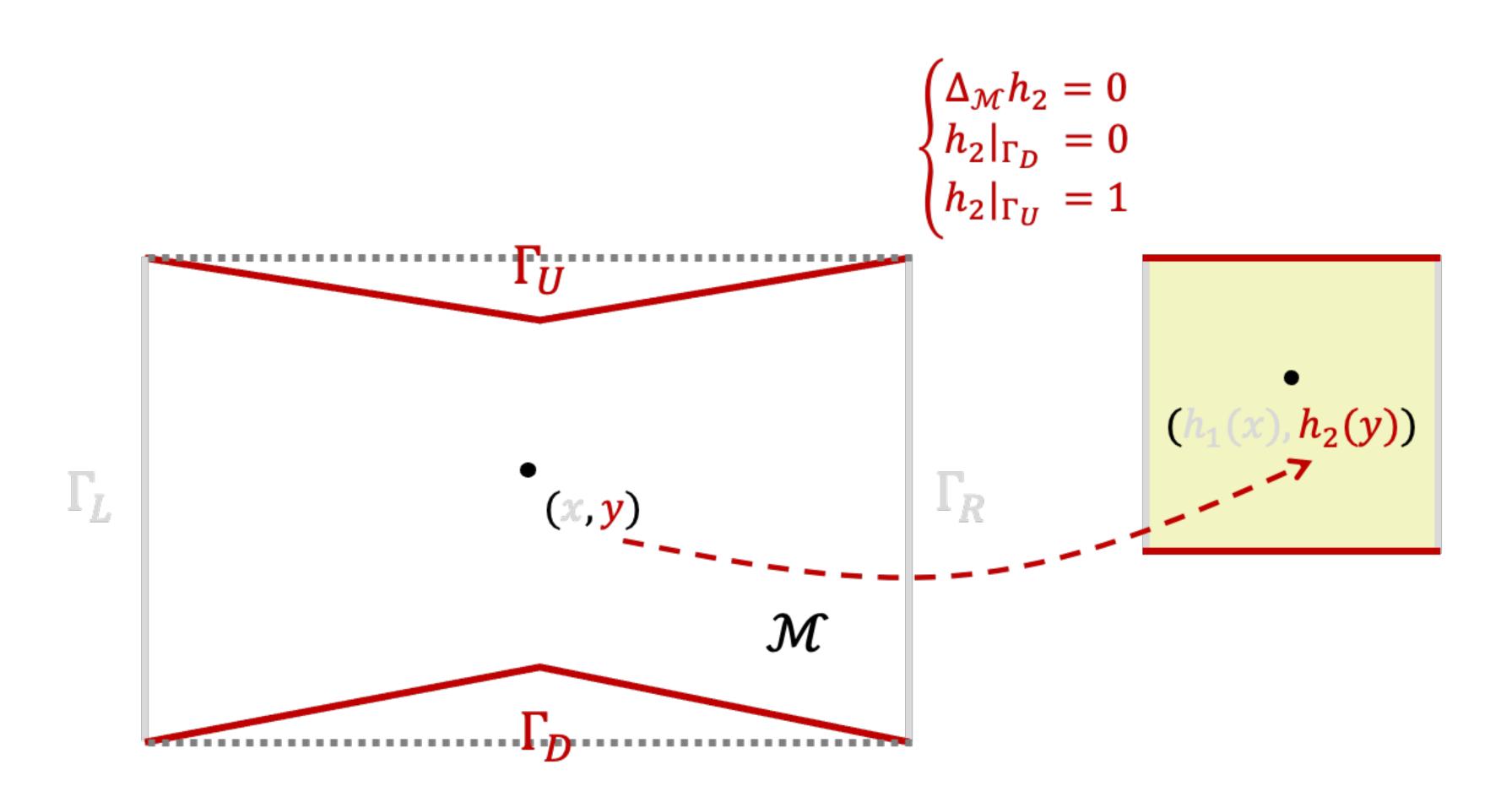
Result of Poisson Image Blending



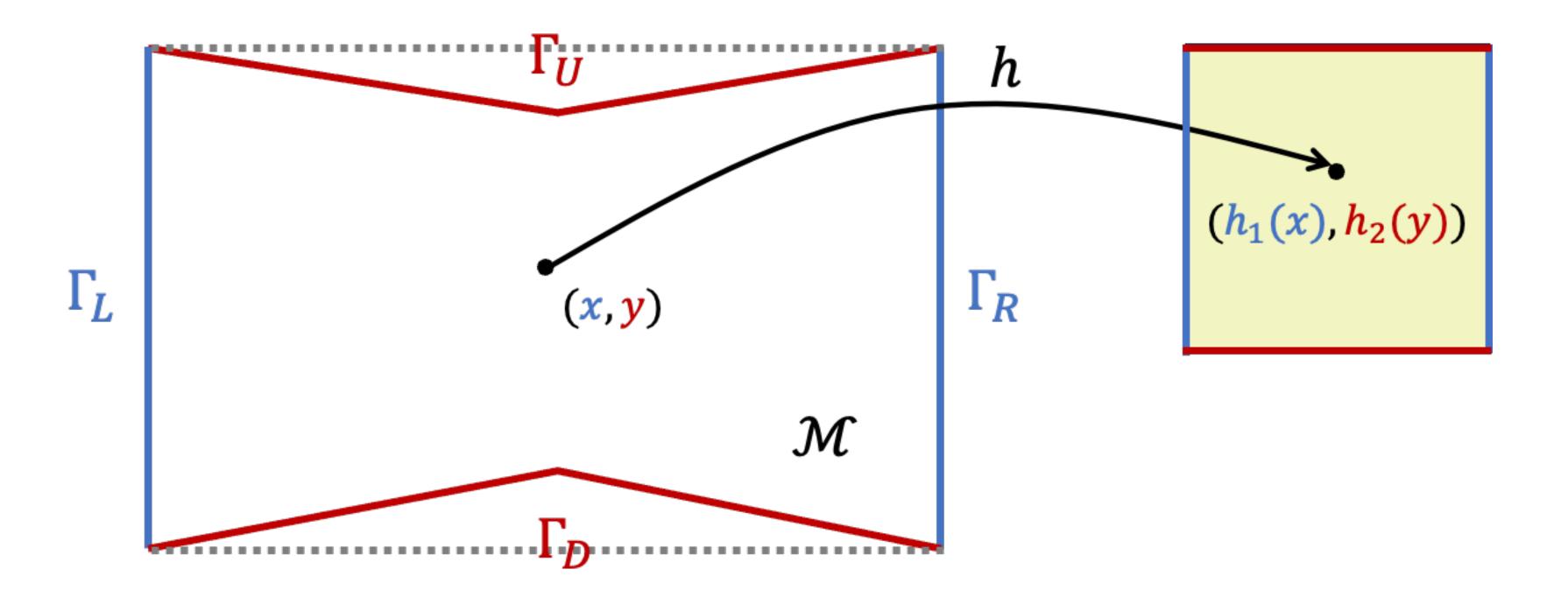
Construct a Delaunay triangular mesh $\mathcal{M} = (V, F)$. Our goal is to find the map $f: \mathcal{M} \to \mathbb{R}^2$ with minimum angle distortion.



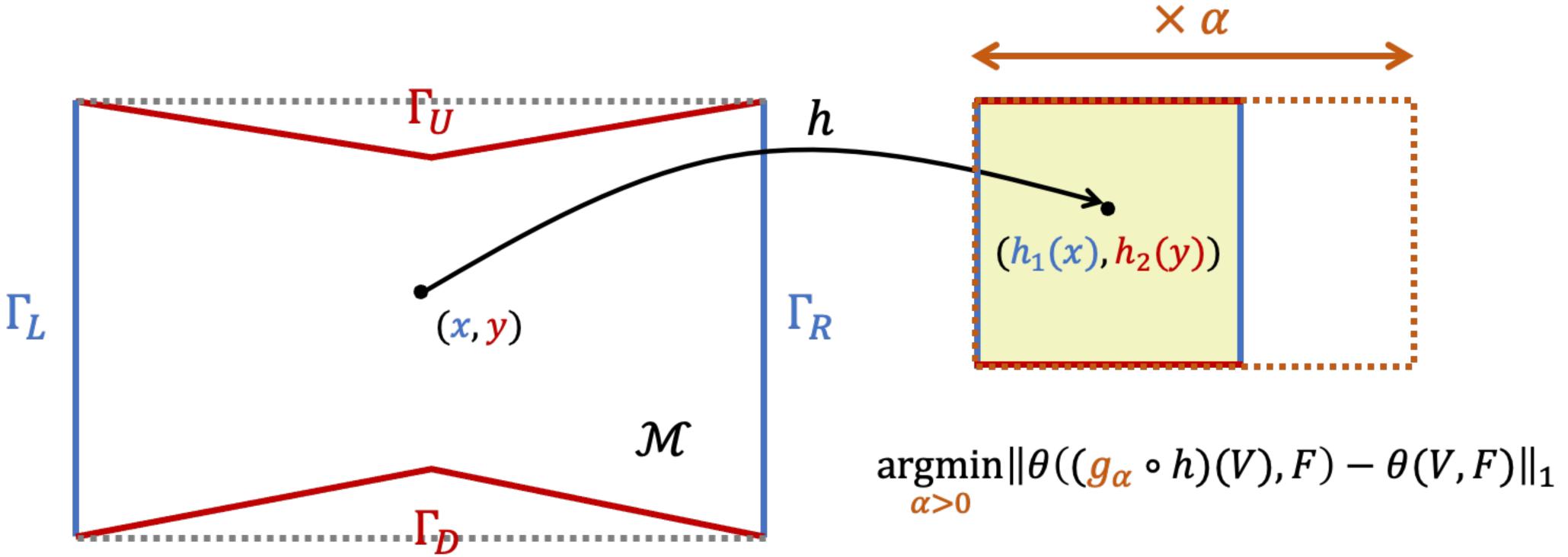




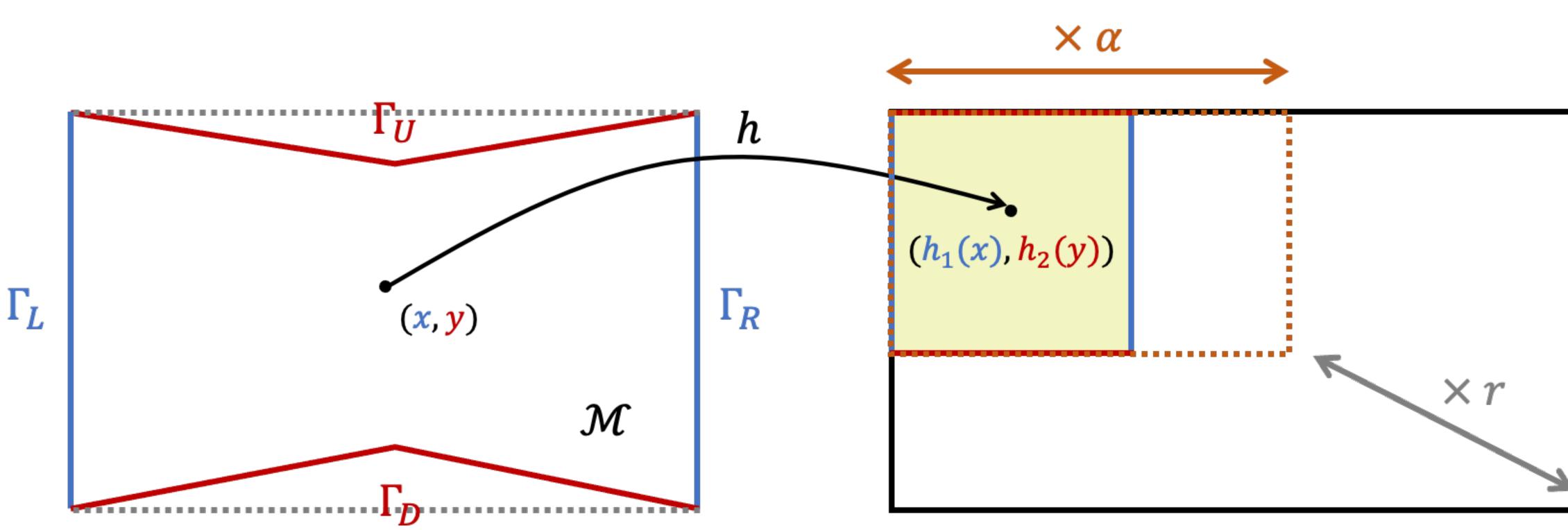
Conformal Reshaping



Conformal Reshaping



Conformal Reshaping



Conformal Reshaping Algorithm

Given the triangular mesh $\mathcal{M} = (V, F)$ and height scale factor r > 0. 1. Compute harmonic mappings h_1 , h_2 solving Poisson equations:

$$\left\{egin{array}{ll} \Delta_{\mathcal{M}}h_1=0,\ h_1\mid_{\Gamma_L}=0,\ h_1\mid_{\Gamma_R}=1, \end{array}
ight.$$

2. Determine optimal aspect ratio α to minimize angular distortion:

$$\alpha^* = \underset{\alpha > 0}{\operatorname{argmin}} \|\theta((g_{\alpha} \circ h)(V), F) - \theta(V, F)\|_1.$$

where
$$g_{\alpha}(x, y) = (\alpha rx, ry)$$
.

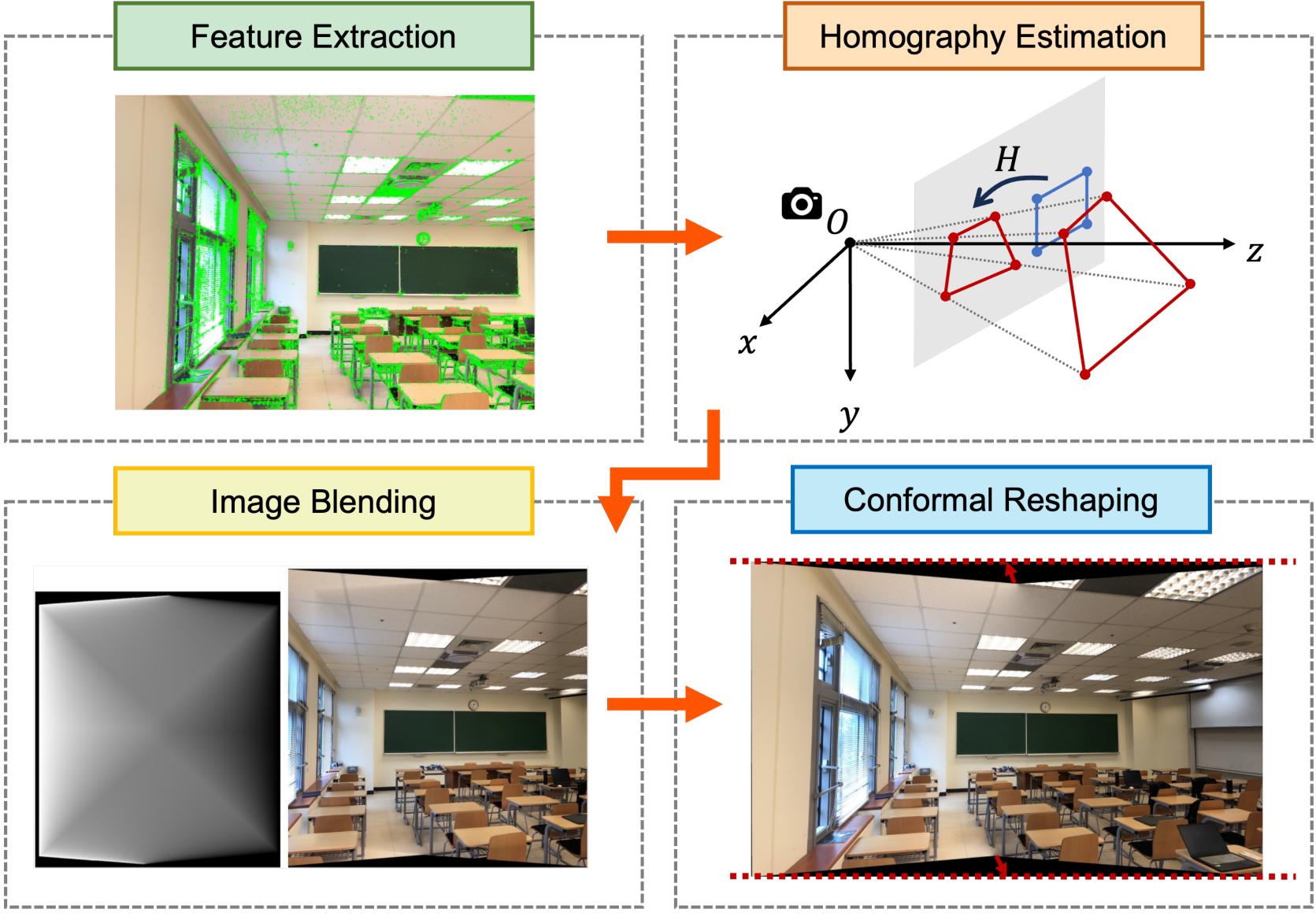
and $\begin{cases} \Delta_{\mathcal{M}} h_2 = 0, \\ h_2 \mid_{\Gamma_D} = 0, \\ h_2 \mid_{\Gamma_{\prime\prime}} = 1, \end{cases}$

Result of Conformal Reshaping

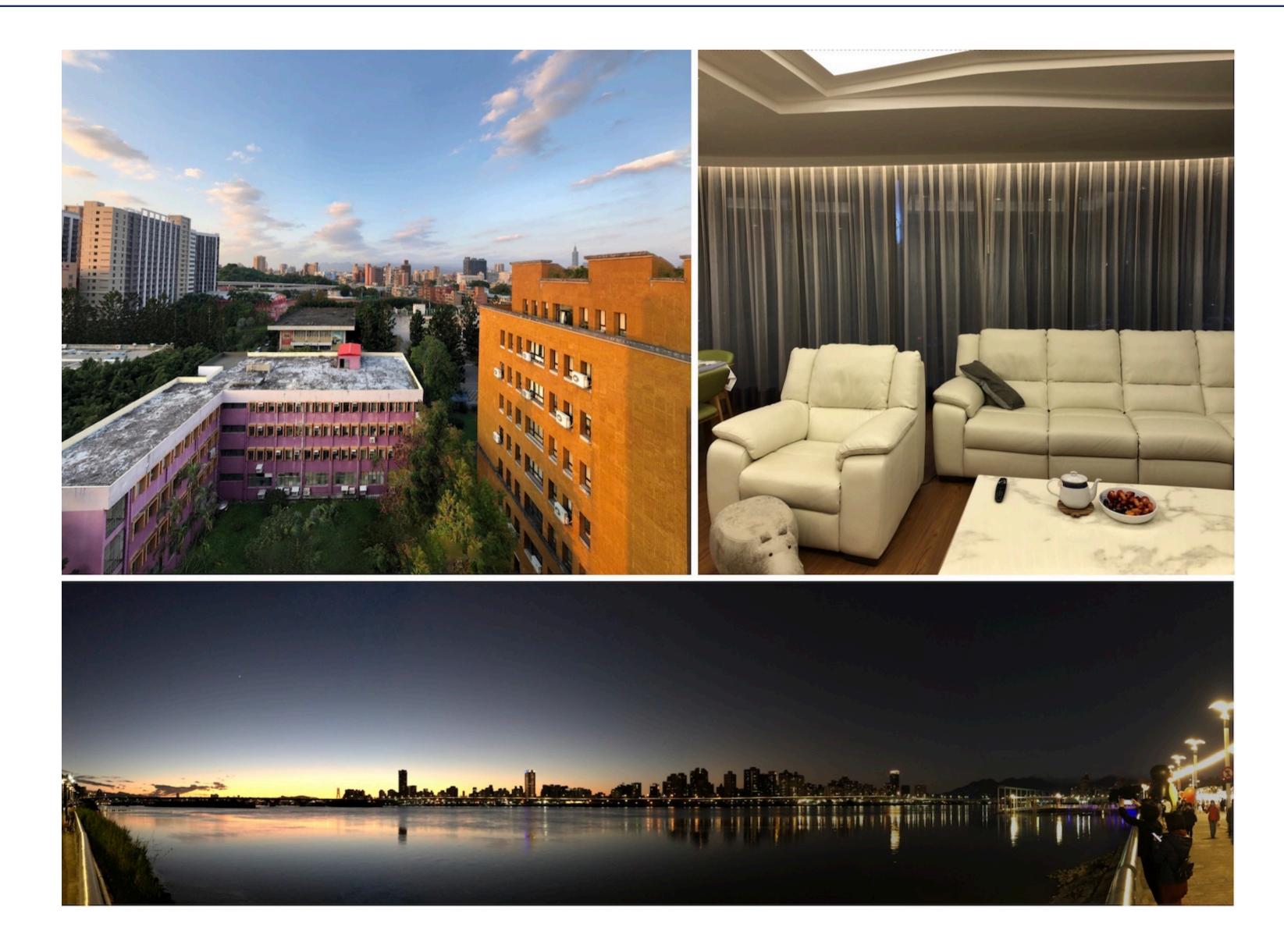
(a) Stitched image w/o conformal reshaping.

(b) Stitched image w/ conformal reshaping..

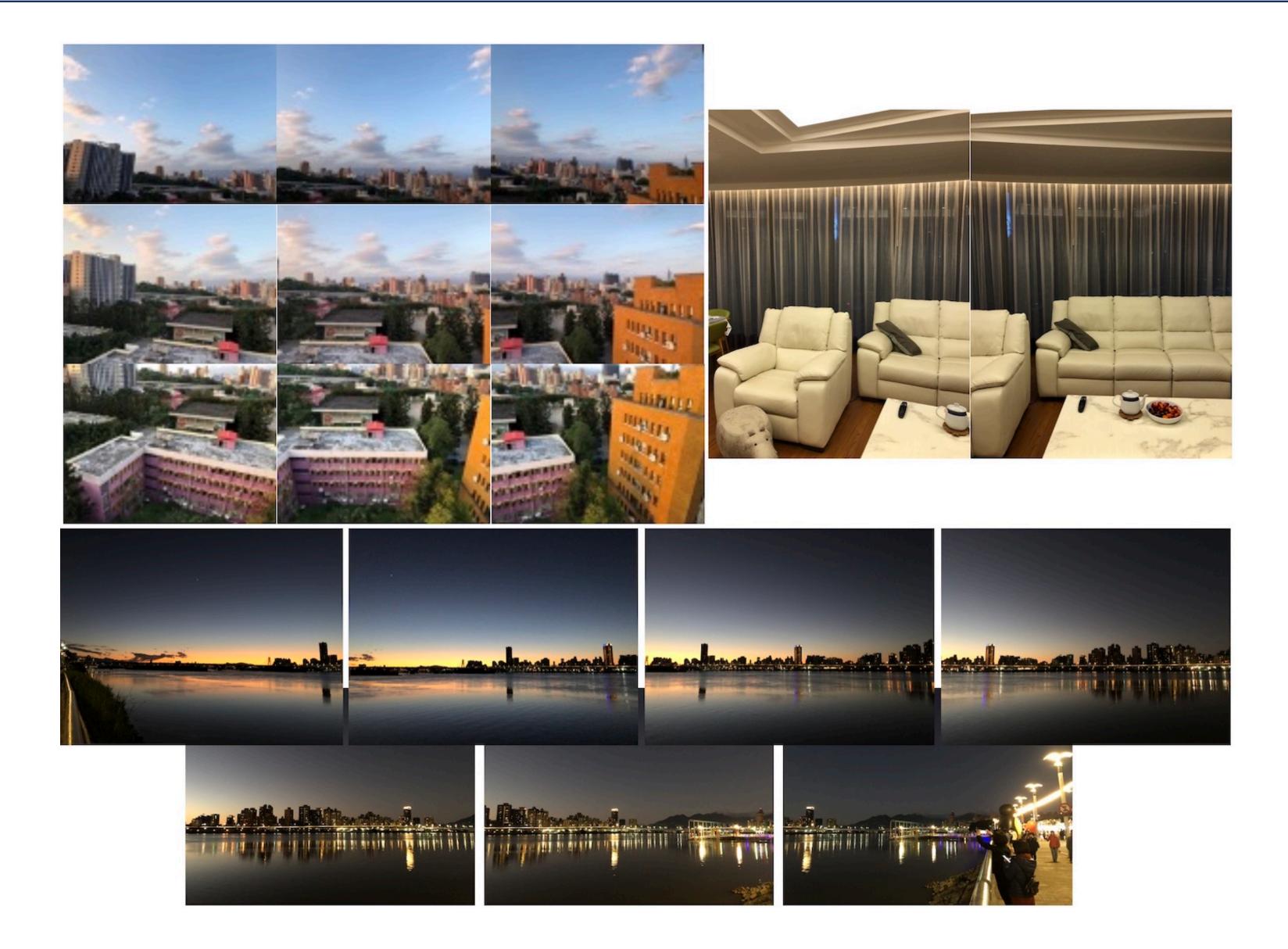
End-to-End Image Stitching Pipeline



Perfect Results

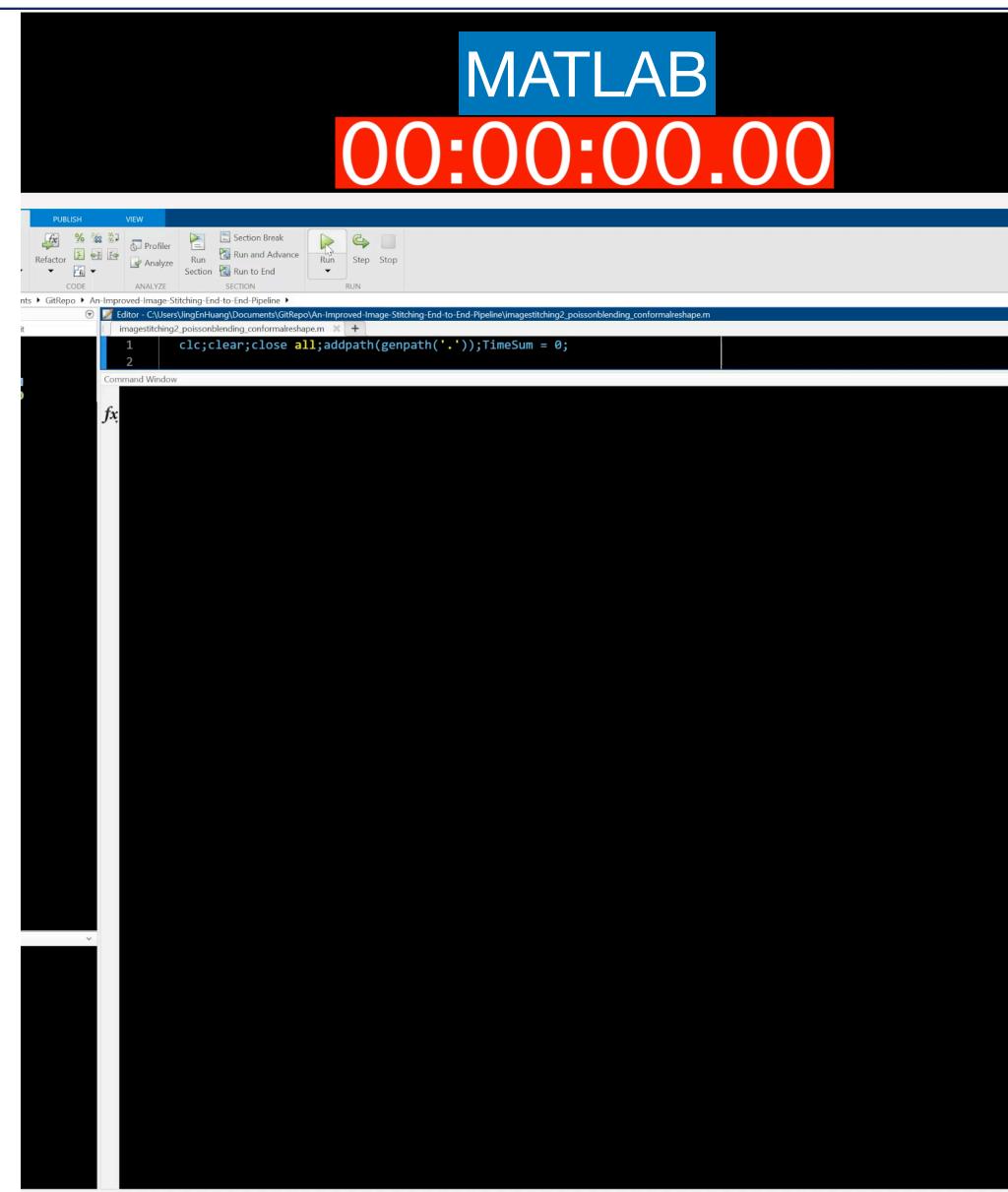


Perfect Results



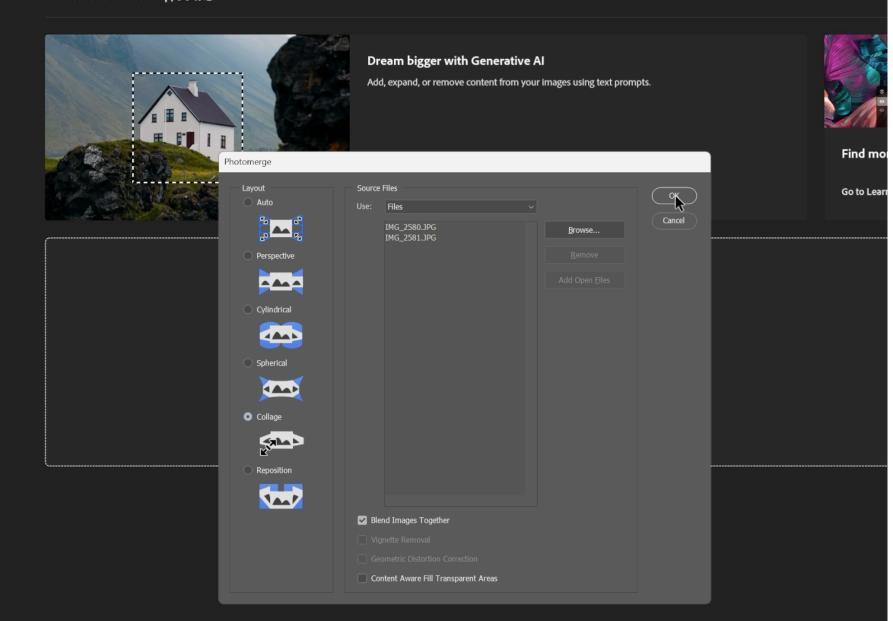
Rapid Results of Comparing to Photoshop (I)

ns Window Help



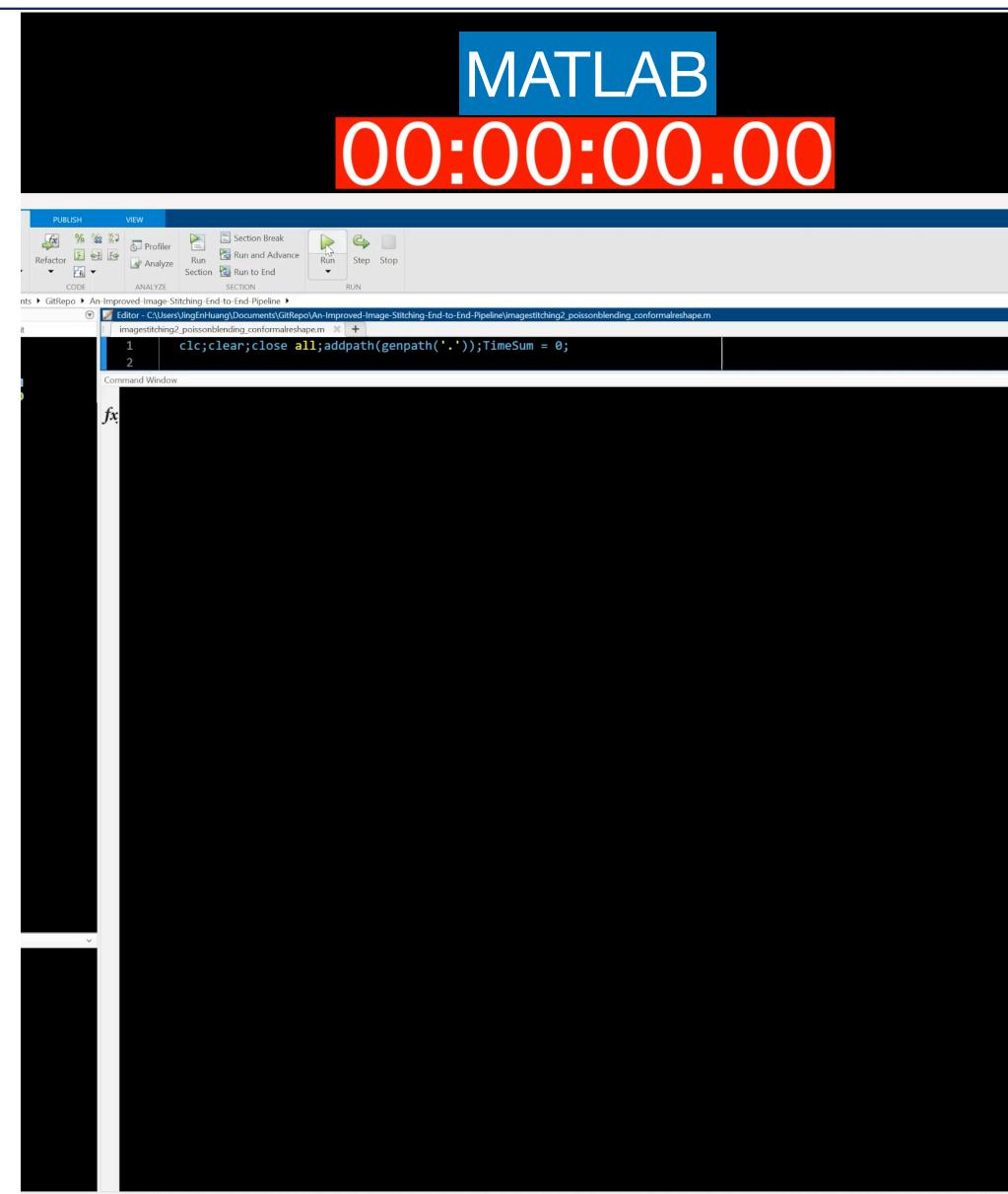
Photoshop 00:00:00.00

Welcome to Photoshop, 黃靖恩



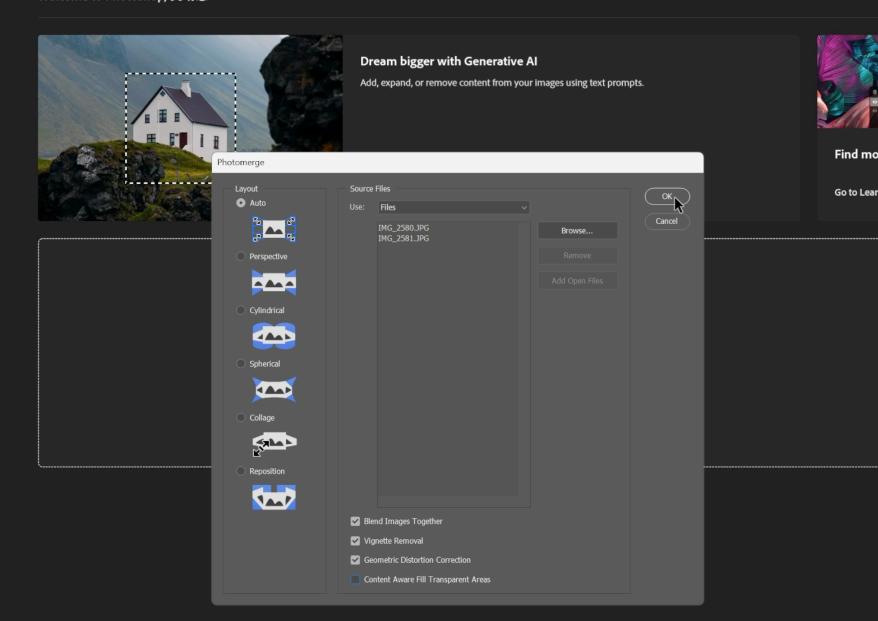
Rapid Results of Comparing to Photoshop (II)

ns Window Help



Photoshop 00:00:00.00

Welcome to Photoshop, 黃靖恩



- Employing strategic techniques enhances the accuracy of image stitching.
- We developed an end-to-end system for perfectly and rapidly stitching images.

Scientific Computing enables robust and accelerated solutions for linear systems.

Thank you!

