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1 Algorithm and Model Architecture

In this session, we will introduce three models: Random Forest [1], LightGBM [2],

and TabPFN [3]. Furthermore, data preprocessing and feature engineering techniques

will be discussed in Section 3.

Figure 1: Model Architecture

The feature extraction process consists of two parts. In the first part, we employ the

Fast Fourier Transform (FFT) to extract frequency features and calculate statistical indi-

cators, constructing a global feature. The second part involves utilizing a deep learning-

based pretraining model to extract local features, followed by dimension reduction using
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Principal Component Analysis (PCA) to retain relevant feature combinations.

For the model training phase, we utilize machine learning-based tree models, namely

Random Forest and LightGBM, and a deep learning-based transformer model called

TabPFN for prediction purposes. An ensemble is performed on the predicted probabilities

these models generate to obtain the final output.

1.1 Random Forest

Random Forest is an ensemble model that combines multiple decision trees. Each

tree is trained on a random subset of the data and features. The GINI index measures

the impurity of features and determines the splitting criteria at each node. The model

employs a greedy algorithmwhere each tree is constructed by recursively partitioning the

data based on the selected features. Bagging is applied to the ensemble by aggregating the

predictions from individual trees, resulting in a more robust and accurate final prediction.

Parameter Value
n_estimators 100

criterion gini
min_samples_split 2
min_samples_leaf 1

1.2 LightGBM

LightGBM is a gradient-boosting framework that utilizes decision trees as weak learn-

ers. It employs a technique called residual learning, where subsequent trees are trained

to learn and correct the residual errors of the previous trees. This iterative process gradu-

ally improves the model’s performance by focusing on the remaining errors. LightGBM

optimizes the construction of decision trees using a leaf-wise approach, which grows

the tree by selecting the leaf node with the maximum reduction in the loss function. This

strategy enables LightGBM to achieve faster training and better accuracy than traditional

gradient-boosting methods.

Parameter Value
boosting_type gbdt

num_leaves 31
learning_rate 0.1
n_estimators 100
class_weight balanced

objective multiclass
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1.3 TabPFN

TabPFN is a neural network architecture based on transformers, originally designed

for tabular data. It incorporates causal inference to discover causal relationships among

the different components or variables in the system. This enables TabPFN to capture

complex interactions and dependencies between variables, allowing it to adapt well to

unknown datasets and generalize to different contexts. Additionally, TabPFN is specif-

ically designed to handle small data sets, where traditional deep learning models may

struggle due to overfitting. It leverages techniques such as attention mechanisms and

self-attention to extract meaningful features and make accurate predictions even with

limited data.

Parameter Value
N_ensemble_configurations 100

2 Innovative

Figure 2: Training / Prediction Pipeline

In this competition, we present a novel pipeline for disease classification. Our ap-

proach combines traditional signal processing techniques with modern deep learning

methods to effectively extract both global and local features, leveraging the unique strengths

of each domain. Specifically, we employ specific signal processing algorithms, such as

Fast Fourier Transform (FFT), to capture essential signal characteristics. Additionally,

we utilize a powerful pretrainingmodel to extract latent features using a zero-shot transfer

method. Furthermore, to capture complex patterns and relationships within the data, we

incorporate state-of-the-art models provided by external libraries [4, 5]. These models

enhance our ability to handle intricate data structures and improve the overall perfor-

mance of our classification system.
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Our innovative methodology further exploits ensemble techniques, allowing us to cap-

italize on the complementary nature of traditional signal processing and deep learning.

This integration of techniques has yielded superior performance compared to employing

each approach individually.

To validate the significance of the extracted features, we compute feature importance

indicators. These indicators provide quantitative measures of the impact of each feature

on the model’s performance, thereby confirming the effectiveness of our feature extrac-

tion process. Moreover, we utilize Shapley values [6] to gain a deeper understanding of

the individual contributions of each feature. By quantifying the influence of each fea-

ture on the model’s output, we can provide comprehensive explanations for the decision-

making process of the model.

3 Data Preprocessing

This competition aims to use artificial intelligence technology to improve the detec-

tion and classification of voice disorders, with a focus on applications in the biomedical

industry. The voice disorders are common in professions that rely heavily on the use of

the audio, but they are difficult to detect and often require specialised medical profes-

sionals and equipment. In this competition, participants will use a non-contact approach

that combines vocal signals and medical records, using dynamic sound and static text

information to detect and classify diseases. The aim is to improve the quality of life for

people with voice disorders by enabling early detection and treatment.

3.1 Exploratory Data Analysis

We have a dataset consisting of 2,000 annotated audio files, categorized based on the

presence of the vowel sound ” 阿” (pronounced as ”a”). The dataset contains various

classes of audio files, which have been corrected and classified. The corrected classifi-

cations of the audio files are as follows:

1. Phonotrauma: This category includes cases of phonotrauma, such as polyps, nod-

ules, Reinke’s edema, cysts, fibrous masses, and varices.

2. Functional Dysphonia: This category represents incomplete glottic closure and

includes conditions like atrophy, sulcus, and presbyphonia.

3. Vocal Palsy: It encompasses cases of vocal cord paralysis or paresis.
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4. Neoplasm: This category includes vocal cord tumors, specifically neoplasms, and

papillomas.

5. Normal: This category consists of audio files that were evaluated and determined

to be normal, without any abnormal conditions. These files have a GRB value of

0.

In addition to the classification, the table provides the counts of audio files for each

category, as well as the distribution of data for training, public testing, and private testing.

The dataset comprises 1,073 audio files for phonotrauma, 440 files for incomplete glottic

closure, 336 files for vocal palsy, 88 files for neoplasms, and 63 files classified as normal,

totaling 2,000 audio files. Regarding data distribution, the phonotrauma category has

536 files for training, 268 files for public testing, and 269 files for private testing. The

incomplete glottic closure category has 220 files for training, 110 files for public testing,

and 110 files for private testing. The vocal palsy category consists of 168 training files,

84 public testing files, and 84 private testing files. The data statistics are presented in the

following chart Figure 3a and Figure 3b.

(a) Overview each category counts (b) Train set pie chart.

In the audio data, the duration of audio files ranges from 1 to 3 seconds, with 3-second

audio files being the most common. Not all classes of audio files may have instances

for each duration range. To mitigate the influence of audio length, we will introduce

appropriate feature representation methods for audio data. The provided audio file the

corresponding statistical graph is shown in Figure 5. Furthermore, in the tabular data
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provided, we will impute missing values with zeros.

Figure 4: The visualization of the audio file

Figure 5: The audio length in each category.

Based on the reviewed data sources, we will proceed with further feature extraction.

3.2 Feature Extraction

For feature extraction, we divide it into two parts. In the first part, we adopt FFT to

extract frequency features and compute statistical indicators to construct global features.

In the second part, we employ a deep learning-based pretraining model to extract local

features and perform dimension reduction using PCA, retaining useful feature combina-

tions.
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3.2.1 Latent Feature

We employ both wav2vec [7] and WavLM [8] to extract latent features from the audio

data. These pretrained models offer complementary capabilities in capturing global and

local audio characteristics. To address the challenge of high feature dimensionality, we

utilize Principal Component Analysis (PCA) to reduce the dimensionality of the features

to 9 dimensions. It prevents issues such as model learning difficulties and overfitting,

allowing for a more efficient and effective representation of the audio data.

• wav2vec: This pretraining method utilizes contrastive learning. It divides the orig-

inal speech waveform into fixed-length segments and rearranges them. The model

aims to identify the correct order of the speech segments through self-contrastive

learning. This pretraining process enables the model to acquire effective audio

representations that capture crucial features within the speech signal.

• WavLM: It is a potent pretraining model that combines CNN and transformer ar-

chitectures. It transforms speech waveforms into latent representations, effectively

extracting local features. By leveraging both convolutional and transformer lay-

ers, WavLM can capture hierarchical and sequential information within the audio,

leading to enhanced representation learning.

To select a suitable number of principal components, we consider the variance explained

ratio displayed in Figure 6. The accumulated ratio gains little after 9 components. This

observation suggests that reducing the dimensionality to 9 would be appropriate.

Figure 6: Accumulated variance explained ratio of principle components.
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3.2.2 Statistical Feature

We employ FFT to extract frequency information from the audio and calculate statistical

indicators such as the mean, median, and skewness of the signal. Additionally, we in-

corporate statistical indicators of the spectrogram into the feature representation. These

methods enable the extraction of global features from the audio, capturing important

characteristics of the overall signal.

4 Training Method

In the initial phase of our research, we considered three classification algorithms: Ran-

domForest, LightGBM, and TabPFN, respectively. These algorithms were selected based

on their suitability for addressing the specific task at hand.

To address the challenge of imbalanced data distribution, we employed the Balanced

Bagging Classifier in conjunction with each algorithm. This technique helps to alleviate

the bias introduced by class imbalance, thereby improving the overall performance of the

models. By combining the predictions from multiple classifiers through a voting mech-

anism, we obtained an ensemble model that leverages the strengths of each individual

classifier.

To enhance the generalization of each classifier, a comprehensive grid search was con-

ducted using cross-validation. Cross-validation is a widely adopted technique for model

evaluation, as it provides a robust estimate of the model’s generalization performance. In

our study, we employed stratified 5-fold cross-validation, ensuring that the data samples

from different classes are represented proportionately in each fold. By maintaining class

balance within each fold, we minimize the risk of biased performance evaluation due to

the uneven distribution of classes. This approach enables us to obtain reliable perfor-

mance metrics and make informed decisions regarding the selection and optimization of

our classification models.

5 Analysis and Conclusion

In this section, we will describe the feature importance, model selection, and the ob-

tained experimental results.
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5.1 Experiment Result

The evaluationmetrics in this competition isUAR (Unweighted Average Recall). It’s a

metric that measures the average recall across all classes in a classification model, regard-

less of class imbalances. It is calculated by dividing the number of correctly predicted

instances by the total number of instances in each class and then averaging the recall

values.

In Table 1, we found that the ensemble classifier, which was voted by LightGBM

(LGB), RandomForest (RF), and TabPFN and fitted by Balanced Bagging Classifier

(BB), consistently yielded the best results across different situations and datasets. There-

fore, we selected this ensemble classifier as our final model for further analysis.

Model Data

Audio only Tabular only Audio and Tabular

LGB .381 .448 .526
RF .309 .377 .356
TabPFN .302 .372 .405
BB-LGB .481 .514 .614
BB-RF .501 .554 .608
BB-TabPFN .489 .481 .586
BB-Voting .521 .552 *.629

* The highest cv-scores overall.

Table 1: The mean values of cross-validation scores in 5-stratified folds.

In addition, Figure 7, which displays the confusion matrix obtained by concatenating

the prediction results of each fold in cross-validation, reveals that the voting model with

balanced bagging classifier tends to predict a higher number of people for Neoplasm

and Normal categories, even though the occurrence of these two types is relatively low.

Furthermore, Table 3 provides more detailed information regarding the recall, precision,

and accuracymetrics. The recall score is influenced by the denominator, which is the sum

of false negatives and true positives. When the model predicts a large number of samples

as false labels (false negatives), it has a slight impact on the recall score for categories

that account for a majority of the data. Conversely, there is a significant increase in the

recall score for the minor categories, thus improving the overall UAR score. However,

it is important to note that precision and recall scores have a trade-off relationship. That

is, when we strive to increase the recall score for the last two types, there is a notable
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decrease in precision.

Figure 7: Confusion Matrix

precision recall f1-score support

Phonotrauma 0.854 0.576 0.688 536.000
Incomplete Glottic Closure 0.532 0.532 0.532 220.000
Vocal Palsy 0.619 0.714 0.663 168.000
Neoplasm 0.169 0.477 0.250 44.000
Normal 0.270 0.844 0.409 32.000

accuracy 0.594
macro avg 0.489 0.629* 0.508 1000.000
weighted avg 0.695 0.594 0.621 1000.000

* The UAR score.

Table 2: The report for each types of diseases

Overall, these findings highlight the impact of the model’s prediction tendencies on

the recall, precision, and overall performance. By prioritizing the recall score for specific

types, the model achieves a higher UAR score but at the cost of a decrease in precision,

particularly for the last two types.
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5.2 Feature Importance and SHAP Analysis

Impurity-based feature importances (Figure 8.) can be misleading for high cardinal-

ity features (many unique values), in our case, audio features (numerical) tend to have

higher importance values than tabular features (categorical) if we use this kind of feature

importance.

Figure 8: Impurity-based feature importance

In our approach, instead of relying on impurity-based feature importance, we utilize

Shapley values (SHAP) as an alternative measure of feature importance. The objective

of SHAP is to provide an explanation for the prediction of a particular instance by quan-

tifying the contribution of each feature to the overall prediction. To compute the Shapley

values, we employ the SHAP explanation method, which leverages concepts from coali-

tional game theory. In Figure 9-13, we present a visualization that illustrates the contri-

bution of each feature to the final prediction probability. This visualization is achieved

by representing the mean SHAP value for each class, enabling a better understanding of

how different features impact the prediction for each specific class.

• Phonotrauma: In Figure 9, Age, mean, Occupational vocal demand, and median

have the main contribution to pushing the model output from the base value (0.2)

to the model output. For global interpretability, higher mean and median raise the

predicted class probability. On the other hand, higher Occupational vocal demand

and Age tend to lower the predicted class probability. Noted that for the force plot,
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we take the average of the Shap values of the data in each class.

• Incomplete Glottic Closure: In Figure 10, Age, mean, contrast, wlm0, and me-

dian have the main contribution to pushing the model output from the base value

to the model output. Additionally, higher Age and mean raise the predicted class

probability. On the other hand, higher wlm0 tends to lower the predicted class

probability.

• Vocal Palsy: In Figure 11, contrast, flatness, wlm0, choking, and Voice handicap

index - 10 have the main contribution. Additionally, we see that lower contrast

raises the probability, while higher flatness, wlm0, choking, and Voice handicap

index - 10 also raise the probability.

• Neoplasm: In Figure 12, Smoking, Sex, wlm0, PPD, and wlm4 have the main

contribution. The predicted class probability exhibits a positive relationship with

smoking, wlm4, and PPD. The predicted class probability shows a negative rela-

tionship with Sex.

• Normal: In Figure 13, median, mean, Age, wlm4, and contrast have the main

contribution. Age and wlm4 exhibit a negative relation with the predicted class

probability, while median, mean, and contrast shows a positive relation.

Overall, we find that the features we extract from audio data provide valuable insights

and contribute significantly to the predicted probability.
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Figure 9: SHAP analysis of class Phonotrauma

Figure 10: SHAP analysis of class Incomplete Glottic Closure
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Figure 11: SHAP analysis of class Vocal Palsy

Figure 12: SHAP analysis of class Neoplasm
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Figure 13: SHAP analysis of class Normal

5.3 Another Trial

We also attempted a purely computer vision approach, following the process of audio

classification problems [9] [10]. In this competition, the participants were human beings,

and the reference data [10] was used to differentiate sounds produced by different objects,

with more noticeable differences in their corresponding audio frequencies. The concept

involved transforming the audio into a spectrogram, which presents the time-frequency

distribution of the sound’s various frequency components as a heatmap.

We applied the Short-time Fourier Transform (STFT) to calculate the energy distribu-

tion of different frequencies in local segments of the audio. The choice of segment width

affects the trade-off between time and frequency. To address the time-frequency trade-

off issue of STFT, we employed three different widths for transformation and stacked

the resulting outputs into a three-channel image. This image served as input for both

CNN-based and Vision Transformer (ViT)-based models for prediction. To increase data

diversity, we introduced methods such as adding noise and randomly shifting images.

However, despite these efforts, we were unable to achieve a consistent improvement in

the UAR metric, which remained oscillating between 0.45 and 0.55 without significant

progress.
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5.4 Conclusion

By prioritizing recall scores, we achieve a higher UAR score but observe a decrease in

precision, especially for the last two types. Cross-validation ensures rigorous evalua-

tion and selection of the most effective model. Our cross-validation scores show little

difference between the public and private datasets, indicating the model’s robustness.

Additionally, we employ SHAP values to measure feature importance, considering their

advantages over impurity-based feature importance, particularly for high cardinality fea-

tures. Furthermore, we explore a computer vision approach as an alternative, but it did

not lead to significant improvements in performance.

Model Public Score Private Score

BB-Voting .657 .641

Table 3: The final UAR score of public and private dataset

6 Source Code

Our team has made our code accessible on GitHub, utilizing the MIT License. The code

repository can be found at the followingURL: https://github.com/SeanChenTaipei/

Audio_Classification.
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