An UNet-based Brain Tumor Segmentation Framework via Optimal Mass Transportation Pre-processing

Jia-Wei Liao, Tsung-Ming Huang, Tiexiang Li, Wen-Wei Lin, and Shing-Tung Yau

Geometric Information and Medical Imaging Laboratory (GIMI Lab), Taiwan

September 18, 2022

Problems:

- Due to the large input size for training, we only use small batch sizes.
- Enhancing tumor (ET) is so small and dispersed that models are difficult to detect.

Proposed method:

- Use OMT to deform irregular objects into regular objects, which reduces the shape of model input and speeds up model training.
- Detect the WT roughly in phase 1 and segment the WT, TC, and ET in phase 2. The tumor's proportion can enlarge by the density function in phase 2.
- Generate the data augmentation by using OMT with different density function.

Optimal Mass Transportation (OMT) Problem

OMT Problem [[2](#page-11-0), [4](#page-11-1)]:

 $240 \times 240 \times 155 \times 4$

 $128 \times 128 \times 128 \times 4$

$$
f^* = \underset{f \in \mathsf{MP}}{\arg \min} \sum_{v \in \mathcal{V}(\mathcal{B})} \|v - f(v)\|_2^2 \ m(v), \tag{1}
$$

• the function space of mass-preserving map is

 $MP = \{f : \mathcal{B} \to \mathcal{C} \mid \rho(\tau)|\tau| = |f(\tau)|, \forall \tau \in \mathcal{T}(\mathcal{B})\},\$

• the local mass with the density function is

$$
m(v) = \frac{1}{4} \sum_{\tau \in N(v)} \rho(\tau) |\tau|.
$$

Two-Phase OMT (2P-OMT) Framework: Phase 1

In phase 1, the density function is defined as

$$
\rho_1(v) = \exp(\gamma \cdot \text{HE}(g(v))),\tag{2}
$$

where *g* is the grayscale of flair mode, HE is the histogram equalization, and $\gamma > 0$ is a hyper-parameter.

Two-Phase OMT (2P-OMT) Framework: Phase 2

In phase 2, the density function is defined as

$$
\rho_2(v) = \begin{cases} \exp(\gamma \cdot \text{HE}(g(v))), & \text{if } v \in \mathcal{R} \\ 1.0, & \text{if } v \in \mathcal{B} \setminus \mathcal{R} \end{cases}
$$
(3)
\n**Phase 2**
\nRaw image
\n**PMase**
\n
$$
\frac{\text{OMT}}{\rho_2(v)}
$$
\n
$$
\frac{\text{Model 2}}{\rho_2(v)}
$$
\n
$$
\frac{\text{(OMT)}^{-1}}{\text{wr, rc, ET}} \quad \text{(3)}
$$
\n
$$
\frac{\text{(OMT)}^{-1}}{\text{wr, rc, ET}} \quad \text{(4)}
$$
\n
$$
\frac{\text{40} \times 240 \times 155 \times 4}{240 \times 240 \times 155 \times 3} \quad \frac{128 \times 128 \times 128 \times 4}{240 \times 240 \times 155 \times 3} \quad \frac{240 \times 240 \times 155 \times 3}{240 \times 240 \times 155 \times 3}
$$

Data Pre-processing and Augmentation (I)

- Split the dataset into 1000 for training and 251 for validation.
- Generate the OMT data with different densities (*γ*: 1.0, 1.5, 1.75, 2.0) and randomly choose one of the densities of OMT data for training.
- Choose the OMT data with $\gamma = 1.5$ for validation step.

Data Pre-processing and Augmentation (II)

γ	WT	TC.	ET.
Raw	6.49%	2.42%	1.45%
1.0	13.47%	5.03%	3.04%
1.5	18.27%	6.84%	4.14%
1.75	20.93%	7.84%	4.75%
2.0	23.72%	8.90%	5.40%

Table 1: Average proportion of tumor.

- Use min-max normalization to rescale the grayscale to $[0, 1]$.
- Use the data augmentation with following probability:

Table 2: Probability of data augmentation.

Ē.

 \overline{a}

Training Processing

- **•** Epoch: 1000
- **Batch size: 12**
- Model: SegResNet [[3](#page-11-2)] (MONAI package)
- \bullet Loss function: Dice Loss $+$ Focal Loss
- \bullet Optimization: Adam + Weight decay + Cosine decay

Figure 1: Architecture of SegResNet.

Post-processing: Adaptive Ensemble

Let *w* be the normalized eigenvector corresponding to the spectral radius of *D*. Then the final prediction is

$$
\widehat{P} = \sum_{i=1}^4 w_i P_i.
$$

Table 3: Compared to the Dice score of different preprocessing with SegResNet.

Table 4: Comparison results with other participants in the BraTS2021 Challenge.

- ¹ We developed the 2POMT framework, which significantly improved performance compared with random crop pre-processing.
- ² We can use density function to enlarge tumor proportion to help the model detection the tumor.
- ³ We can generate OMT data with different densities achieving data augmentation, which can avoid over-fitting and enhance the robustness of a model.
- ⁴ We proposed a novel ensemble method for post-processing, which can adaptively compute the weighted sum of predictions.

Reference

- [1] Alessandro Crimi and Spyridon Bakas. *Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021 Held in Conjunction with MICCAI 2021 Virtual Event, September 27, 2021 Revised Selected Papers, Part I*. 2022.
- [2] Wen-Wei Lin et al. "A novel 2-phase residual U-net algorithm combined with optimal mass transportation for 3D brain tumor detection and segmentation". In: *Sci. Rep.* 12 (2022), pp. 1–16.
- [3] Andriy Myronenko. "3D MRI brain tumor segmentation using autoencoder regularization". In: *BrainLes@MICCAI*. 2018.
- [4] Mei-Heng Yueh et al. "Projected Gradient Method Combined with Homotopy Techniques for Volume-Measure-Preserving Optimal Mass Transportation Problems". In: *J. Sci. Comput.* 88.3 (Sept. 2021). issn: 0885-7474.

Thanks for listening!