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Motivation

Problems:
Due to the large input size for training, we only use small batch sizes.
Enhancing tumor (ET) is so small and dispersed that models are
difficult to detect.

Proposed method:
Use OMT to deform irregular objects into regular objects, which
reduces the shape of model input and speeds up model training.
Detect the WT roughly in phase 1 and segment the WT, TC, and ET
in phase 2. The tumor’s proportion can enlarge by the density
function in phase 2.
Generate the data augmentation by using OMT with different density
function.
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Optimal Mass Transportation (OMT) Problem
OMT Problem [2, 4]:

f ∗ = arg min
f∈MP

∑
v∈V(B)

∥v − f (v)∥2
2 m(v), (1)

the function space of mass-preserving map is
MP = { f : B → C | ρ(τ)|τ| = | f (τ)|, ∀τ ∈ T (B)} ,

the local mass with the density function is

m(v) =
1
4 ∑

τ∈N(v)
ρ(τ)|τ|.
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Two-Phase OMT (2P-OMT) Framework: Phase 1

In phase 1, the density function is defined as

ρ1(v) = exp(γ · HE(g(v))), (2)

where g is the grayscale of flair mode, HE is the histogram equalization,
and γ > 0 is a hyper-parameter.
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Two-Phase OMT (2P-OMT) Framework: Phase 2

In phase 2, the density function is defined as

ρ2(v) =

{
exp(γ · HE(g(v))), if v ∈ R
1.0, if v ∈ B \R

. (3)

J.-W. Liao et al. (GIMI Lab) BraTS2022 Challenge September 18, 2022 5 / 13



Data Pre-processing and Augmentation (I)

Split the dataset into 1000 for training and 251 for validation.
Generate the OMT data with different densities (γ: 1.0, 1.5, 1.75, 2.0)
and randomly choose one of the densities of OMT data for training.
Choose the OMT data with γ = 1.5 for validation step.
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Data Pre-processing and Augmentation (II)
γ WT TC ET

Raw 6.49% 2.42% 1.45%
1.0 13.47% 5.03% 3.04%
1.5 18.27% 6.84% 4.14%
1.75 20.93% 7.84% 4.75%
2.0 23.72% 8.90% 5.40%

Table 1: Average proportion of tumor.

Use min-max normalization to rescale the grayscale to [0, 1].
Use the data augmentation with following probability:

Transformation Flip Rotate Add noise Adjust brightness
Probability 0.25 0.25 0.1 0.1

Table 2: Probability of data augmentation.
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Training Processing
Epoch: 1000
Batch size: 12
Model: SegResNet [3] (MONAI package)
Loss function: Dice Loss + Focal Loss
Optimization: Adam + Weight decay + Cosine decay

Figure 1: Architecture of SegResNet.
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Post-processing: Adaptive Ensemble

Let w be the normalized eigenvector corresponding to the spectral radius
of D. Then the final prediction is

P̂ =
4

∑
i=1

wiPi.
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Experiment Results

Preprocessing Cross-validation Online validation
WT TC ET WT TC ET

Random Crop 0.9340 0.9082 0.8650 0.9194 0.8542 0.8242
2P-OMT 0.9371 0.9157 0.8819 0.9214 0.8823 0.8411

Table 3: Compared to the Dice score of different preprocessing with SegResNet.

Paper [1] Preprocessing Model WT TC ET
P. Druzhinina et al. Random Crop scan lite-20 0.9220 0.8680 0.8300
H.-Y. Wu et al. Random Crop HarDNet-BTS 0.9260 0.8793 0.8442
J. Ma et al. Random Crop NnUNet 0.9259 0.8786 0.8217
H. S. Singh et al. Random Crop Attention UNet 0.9080 0.8600 0.8170
Proposed 2P-OMT SegResNet 0.9214 0.8823 0.8411

Table 4: Comparison results with other participants in the BraTS2021 Challenge.
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Conclusion

1 We developed the 2POMT framework, which significantly improved
performance compared with random crop pre-processing.

2 We can use density function to enlarge tumor proportion to help the
model detection the tumor.

3 We can generate OMT data with different densities achieving data
augmentation, which can avoid over-fitting and enhance the
robustness of a model.

4 We proposed a novel ensemble method for post-processing, which can
adaptively compute the weighted sum of predictions.
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Thanks for listening!
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