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Introduction

Introduction to Recommender System

A competition held by Netflix in 2006.

100,480,570 ratings that 480,189 users gave to 17,770 movies.

10% improvement then gain 1 million dollar prize.
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Introduction

Introduction to Recommender System

(user, movie) rating

(1, 5) 4
(1, 18) 1
(1, 32) 3
(1, 44) 2
(2, 22) 5
(2, 90) 2
(3, 49) 3
(3, 56) 4
(3, 70) 5
(3, 94) 1

...
...
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Introduction

Idea of Low-rank Approximation
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Introduction

Idea of Low-rank Approximation

Given R ∈ Rm×n is rating matrix, where m is number of user, and n is
number of movie. Our goal is going to find the feature vector of user xi
and feature vector of movie yj such that

ri,j ≈ x⊤i yj, for all i, j
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Introduction

Problem

Given R ∈ Rm×n is rating matrix, Our goal is going to find the user matrix
X ∈ Rk×m and feature matrix Y ∈ Rk×n such that

R ≈ X⊤Y.

Question

1 How to find X and Y ?

2 How to approximate R ?

3 How to compute with big data?
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Preliminaries Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

SVD

Let A ∈ Rm×n. Then there exist orthogonal matrices U ∈ Rm×m and
V ∈ Rn×n such that U⊤AV = Σ is a diagonal matrix, where

Σij =

{
σi, i = j
0, i ̸= j

, with σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

and r = rank(A).
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Preliminaries Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

Separates A into r pieces rank 1 by SVD

A =
[

u1 · · · um
]


σ1
. . . Or×(n−r)

σr
O(m−r)×r O(m−r)×(n−r)


 v⊤1

...

v⊤n


=

r

∑
i=1

σiuiv⊤i .

Rank k approximate

Let Ak = ∑k
i=1 σiuiv⊤i . If B has rank k, then

∥A− Ak∥∗ ≤ ∥A− B∥∗.
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Preliminaries Matrix Norm

Matrix Norm

Matrix norm

1 Spectral norm:

∥A∥2 = max
x ̸=0

∥Ax∥2

∥x∥2
= σ1,

2 Frobenius norm:

∥A∥F =

√√√√ n

∑
i=1

m

∑
j=1
|aij|2 =

√
σ2

1 + · · ·+ σ2
r ,

3 Nuclear norm:

∥A∥N = σ1 + · · ·+ σr.
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Approach Alternative Least Square (ALS)

Idea

Rank k approximation

Given k ∈N with 1 ≤ k < r.

R = UΣV⊤ ≈ UkDk
2Vk = (DkU⊤k )⊤(DkV⊤k ) = X⊤Y

where Ũ = [u1, ..., uk], Ṽ = [v1, ..., vk] and D = diag(
√

σ1, ...,
√

σk).

Question

Does it work on the largest dataset?
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Approach Alternative Least Square (ALS)

Matrix Factorization

First, We consider the minimization problem with regularization.

min
X,Y
∥R− X⊤Y∥2

F + λ
(
∥X∥2

F + ∥Y∥2
F
)

,

where

R ∈ Rm×n, X ∈ Rk×m and Y ∈ Rk×n,

λ > 0 is a parameter.

Remark

min
X∈Rk×m,Y∈Rk×n

∥R− X⊤Y∥2
F + λ

(
∥X∥2

F + ∥Y∥2
F
)

= min
Z:rank Z≤k

∥R− Z∥2
F + 2λ∥Z∥∗.
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Approach Alternative Least Square (ALS)

Alternative Least Square (ALS)

Given initials X0, Y0, for t = 0, 1, 2, ..., we solve the following two
sub-problem alternatingly:

Xt+1 = arg min
X
∥R− X⊤Yt∥2

F + λ∥X∥2
F,

Yt+1 = arg min
Y
∥R− Xt+1

⊤Y∥2
F + λ∥Y∥2

F.

We iterate until convergence.
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Approach Alternative Least Square (ALS)

Solving Alternative Least Square

Define

F(X) = ∥R⊤ −Yt
⊤X∥2

F + λ∥X∥2
F.

Then

∇F(X) = −2Yt(R⊤ −Yt
⊤X) + 2λX.

Let ∇F(X) = 0, we have

(YtYt
⊤ + λI)X = YtR⊤.

Therefore, we obtain the solution

Xt+1 = (YtYt
⊤ + λI)−1YtR⊤.
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Approach Alternative Least Square (ALS)

Solving Alternative Least Square

Similarly, we can get

Yt+1 = (Xt+1Xt+1
⊤ + λI)−1Xt+1R.

Therefore, the iterative scheme can be posed as follows:

1 Xt+1 =
(

YtYt
⊤ + λI

)−1
YtR⊤,

2 Yt+1 =
(

Xt+1Xt+1
⊤ + λI

)−1
Xt+1R.
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Approach Alternative Least Square (ALS)

Matrix Factorization

Let Ω = {(i, j) | Ri,j > 0} and

[PΩ(A)]i,j =

{
Ai,j if (i, j) ∈ Ω
0 if (i, j) /∈ Ω

.

Problem

min
X,Y
∥PΩ(R− X⊤Y)∥2

F + λ
(
∥X∥2

F + ∥Y∥2
F
)

,

where

R ∈ Rm×n, X ∈ Rk×m, and Y ∈ Rk×n,

λ > 0 is a parameter.
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Approach Alternative Least Square (ALS)

Matrix Factorization

Problem

min
X,Y
∥PΩ(R− X⊤Y)∥2

F + λ
(
∥X∥2

F + ∥Y∥2
F
)

.

Its equivalence to

min
xi ,yj

∑
(i,j)∈Ω

(ri,j − x⊤i yj)
2 + λ

(
m

∑
i=1
∥xi∥2

2 +
n

∑
i=1
∥yj∥2

2

)
,

where xi, yj ∈ Rk×1.
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Approach Alternative Least Square (ALS)

Solving Alternative Least Square

For fixed i, we define

F(xi) = ∑
(i,j)∈Ω

(ri,j − y⊤j xi)
2 +

m

∑
i=1
∥xi∥2

2.

Then

∇F(xi) = −2 ∑
(i,j)∈Ω

yj(ri,j − y⊤j xi) + 2λxi.

Letting ∇F(xi) = 0, we have ∑
(i,j)∈Ω

yjy⊤j + λI

 xi = ri,jyj.
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Approach Alternative Least Square (ALS)

Solving Alternative Least Square

Algorithm (ALS)

1 Initial x1, x2, ..., xm, y1, y2, ..., yn.

2 For i = 1, 2, ..., m:  ∑
(i,j)∈Ω

yjy⊤j + λI

 xi = ri,jyj.

3 For j = 1, 2, ..., n:  ∑
(i,j)∈Ω

xix⊤i + λI

 yj = ri,jxi.

4 Repeat 2, 3 until convergence.
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Approach Alternative Least Square (ALS)

Summary of ALS

1 The left-hand side of the linear system is sum of the rank 1 matrix.

2 There are (m + n) linear systems with k× k.
3 The time complexity of the direct method is O(|Ω|k2 + (m + n)k3).
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Soft Impute Alternative Least Square (SIALS)

Soft Impute Alternative Least Square (SIALS)

Problem

min
X,Y
∥PΩ(R− X⊤Y)∥2

F + λ
(
∥X∥2

F + ∥Y∥2
F
)

.

Notice that

PΩ(R− X⊤Y) = PΩ(R)−PΩ(X⊤Y) + X⊤Y− X⊤Y.

Let

R̃ = PΩ(R)−PΩ(X⊤Y) + X⊤Y.

Then the problem becomes

min
X,Y
∥R̃− X⊤Y∥2

F + λ
(
∥X∥2

F + ∥Y∥2
F
)

.
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Soft Impute Alternative Least Square (SIALS)

Soft Impute Alternative Least Square (SIALS)

SIALS method

Given an initial X0, Y0, for t = 0, 1, ..., we solve the following two
sub-problem alternatingly:

R̃t+ 1
2
= PΩ(R)−PΩ(Xt

⊤Yt) + Xt
⊤Yt,

Xt+1 =
(

YtYt
⊤ + λI

)−1
YtR̃⊤t+ 1

2
,

R̃t+1 = PΩ(R)−PΩ(Xt+1
⊤Yt) + Xt+1

⊤Yt,

Yt+1 =
(

Xt+1Xt+1
⊤ + λI

)−1
Xt+1R̃t+1.

We iterate until convergence is achieved.
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Soft Impute Alternative Least Square (SIALS)

Solving SIALS by SVD

Idea (rank k approximation) 1

R = UΣV⊤ ≈ UkD2
kVk = (DkU⊤k )⊤(DkV⊤k ) = X⊤Y.

Goal

Given U0 ∈ Rm×k with orthonormal columns, D0 = Ik×k, and V0 = On×k.
We use the Iterative method to find the suitable X = DtUt

⊤, Y = DtVt
⊤

such that

min
X,Y
∥PΩ(R− X⊤Y)∥2

F + λ
(
∥X∥2

F + ∥Y∥2
F
)

.

1T. Hastie, R. Mazumder, J.-D. Lee and R. Zadeh, Matrix Completion and Low-Rank
SVD via Fast Alternating Least Squares, Journal of Machine Learning Research (2015).
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Soft Impute Alternative Least Square (SIALS)

Soft Impute ALS by SVD

Given U0 ∈ Rm×k with orthonormal columns, D0 = Ik×k, and V0 = Ok×k.
Let X0 = D0U0

⊤ and Y0 = D0V0
⊤. For t = 0, 1, ... do

1 R̃t+ 1
2
= PΩ(R)−PΩ(Xt

⊤Yt) + Xt
⊤Yt

2 Xt+ 1
2
=
(

YtYt
⊤ + λI

)−1
YtR̃⊤t+ 1

2

3 Find the SVD of DtXt+ 1
2
, then get Ut+1, Dt+ 1

2

4 Xt+1 = Dt+ 1
2
Ut+1

⊤

5 R̃t+1 = PΩ(R)−PΩ(Xt+1
⊤Yt) + Xt+1

⊤Yt

6 Yt+ 1
2
=
(

Xt+1Xt+1
⊤ + λI

)−1
Xt+1R̃t+1

7 Find the SVD of Dt+ 1
2
Yt+ 1

2
, then get Vt+1, Dt+1

8 Yt+1 = Dt+1Vt+1
⊤
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Soft Impute Alternative Least Square (SIALS)

Soft Impute ALS

Let S = PΩ(R)−PΩ(Xt
⊤Yt). We have R̃ = S + Xt

⊤Yt.
We use Xt = DtUt

⊤ and Yt = DtVt
⊤ to plug in equation 2. Then

Xt+ 1
2
=
(

D2
t + λI

)−1
DtVt

⊤S⊤ +
(

D2
t + λI

)−1
Dt

2Xt.

Similarly, we also have

Yt+ 1
2
=
(

D2
t+ 1

2
+ λI

)−1
Dt+ 1

2
Ut+1

⊤S +
(

D2
t+ 1

2
+ λI

)−1
Dt+ 1

2

2Yt.
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Soft Impute Alternative Least Square (SIALS)

Solving SIALS by SVD

Algorithm (SIALS)

1 Initial: R ∈ Rm×n, U ∈ Rm×k with orthonormal columns, D = Ik×k,
V = On×k, X = DU⊤ and Y = DV⊤.

2 S← PΩ(R)−PΩ(X⊤Y)

3 X̃ ←
(

D2 + λI
)−1 DV⊤S⊤ +

(
D2 + λI

)−1 D2X
4 U, D̃ ← SVD(DX̃), X ← D̃U⊤

5 S← PΩ(R)−PΩ(X⊤Y)

6 Ỹ ←
(

D2 + λI
)−1 DU⊤S +

(
D2 + λI

)−1 D2Y
7 D, V ← SVD(D̃Ỹ), Y ← D̃V⊤

8 Repeat 2-7 until convergence.

9 Output: U, V, D
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Experience and Result ml-1m

Information of Dataset: ml-1m

number of data: 900,188

number of user: 6,040

number of movie: 3,952

sparsity: 3.77%

train-test split: 9 to 1

J.-W. Liao et. al. (NYCU) Low Rank Matrix Factorization December 29, 2021 30 / 41



Experience and Result ml-1m

Time Elapsed
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Experience and Result ml-1m

Objective

λ = 5, d = 50 λ = 20, d = 50
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Experience and Result ml-1m

Metrics

We use the following metrics to evaluate our methods:

1 Root Mean Square Error (RMSE):

RMSEΩ(X, Y) =

√
∑(i,j)∈Ω |Xi,j −Yi,j|2

|Ω|

2 Mean Absolute Error (MAE):

MAEΩ(X, Y) =
∑(i,j)∈Ω |Xi,j −Yi,j|

|Ω|
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Experience and Result ml-1m

Evaluation

λ = 5, d = 50 λ = 20, d = 50

J.-W. Liao et. al. (NYCU) Low Rank Matrix Factorization December 29, 2021 34 / 41



Experience and Result ml-1m

Evaluation

Metrics RMSE MAE

Type Training Testing Training Testing

ALS 0.5542 0.9545 0.4363 0.7385
SIALS (w/o SVD) 0.5745 0.9624 0.4517 0.7441
SIALS (w/ SVD) 0.8928 0.9099 0.7017 0.7143

λ = 5, d = 50 with 600 epochs

Metrics RMSE MAE

Type Training Testing Training Testing

ALS 0.7288 0.8778 0.5727 0.6889
SIALS (w/o SVD) 0.7330 0.8820 0.5749 0.6913
SIALS (w/ SVD) 0.8980 0.9147 0.7101 0.7229

λ = 20, d = 50 with 600 epochs
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Experience and Result ml-10m

ml-10m dataset

number of data: 9,000,048

number of user: 71,567

number of movie: 65,133

sparsity: 0.19%

train-test split: 9 to 1

Metrics RMSE MAE

Type Training Testing Training Testing

ALS 0.7287 0.8453 0.5453 0.6479
SIALS (w/ SVD) 0.9301 0.9454 0.7171 0.7286

λ = 50, d = 100 with 500 epochs
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Experience and Result ml-10m

Prediction of SIALS

We compute r̂i,j = x⊤i yj, and list the prediction as the following:

(user, movie) prediction rounding rating

(308, 1707) 1.5211 2 2
(990, 89) 2.7883 3 3
(2247, 2291) 4.0016 4 3
(2454, 595) 3.8591 4 3
(2853, 3363) 3.7680 4 4
(3067, 703) 1.0212 2 1
(3317, 3793) 4.1885 4 4
(3727, 2259) 2.2826 2 2
(4796, 2761) 4.1454 4 4
(5451, 969) 4.4651 4 5
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Summary

Summary

In this project, we implement ALS, SIALS to do the matrix factorization.
We use the direct method and CG to solve ALS and use SVD to solve
SIALS and then apply it to the recommender system.

Further Topics:

Stochastic Gradient Descent (SGD)

Nonnegative Matrix Factorization (NMF)
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Summary

THE END

Thanks for listening!
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