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Introduction

Introduction to Recommender System

A competition held by Netflix in 2006.
@ 100,480,570 ratings that 480,189 users gave to 17,770 movies.

@ 10% improvement then gain 1 million dollar prize.

Home TVShows Movies Recently Added My List

Western Movies
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Introduction

Introduction to Recommender System
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Introduction

Idea of Low-rank Approximation

Action 0.2 1.2 1.8 1.8
Romance 1.68 0.5 0.1 0.3
Science Fiction 0.2 1.8 0.6 1.6
Fantasy 0.48 0.8 0.4 0.4
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Introduction

Idea of Low-rank Approximation

Given R € R™*" is rating matrix, where m is number of user, and n is

number of movie. Our goal is going to find the feature vector of user x;
and feature vector of movie y; such that

rij R xiTy]-, for all i,

Movie j

User i

k Yj  Movie matrix Y
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Introduction

Problem

Given R € R™*" is rating matrix, Our goal is going to find the user matrix
X € R and feature matrix Y € RF*" such that

R~X'Y.

@ How to find X and Y ?
@ How to approximate R ?

© How to compute with big data?
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Outline

© Preliminaries
e Singular Value Decomposition (SVD)
@ Matrix Norm
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Singular Value Decompositon (SVD)
Singular Value Decomposition (SVD)

SVD

Let A € R™*"™ Then there exist orthogonal matrices U € R™*™ and
V € R™" such that UTAV =X is a diagonal matrix, where

di, i:j .
Y= , withoy >0, > - >0, >0,
ij {0, 17&] 1 2 r

and r = rank(A).
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Singular Value Decompositon (VD)
Singular Value Decomposition (SVD)

Separates A into r pieces rank 1 by SVD

01
v

A:[Ml Mm] ” Orx(nfr) :
r U;r
O(mfr)xr ‘ O(mfr)x(nfr)

r
= Z O'iuil);r.
i=1

Rank k approximate

Let Ay = Zé‘:l crz-uiviT. If B has rank k, then

A = Agll« < [|A = Bl|..
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Matrix Norm

Matrix norm

© Spectral norm:

A
|A|l2 = max ) =0,
@ Frobenius norm:

lAllF =

© Nuclear norm:

lAlly = o1+ + 0

J.-W. Liao et. al. (NYCU) Low Rank Matrix Factorization December 29, 2021

11/41



Outline

e Approach
@ Alternative Least Square (ALS)

@ Soft Impute Alternative Least Square (SIALS)
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Alternative Least Square (ALS)
Idea

Rank k approximation

Given ke N with1 <k <r.
R=UXV' ~ UD?V, = (DU ) (D) = XTY

where U = [uy, ..., u], V = [v1, ..., 0] and D = diag(/07, ..., /).

Does it work on the largest dataset?
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Matrix Factorization

First, We consider the minimization problem with regularization.

min IR = XTY[2 4+ A (IX[F + Y1),

where
@ Re R™" X ¢ RF*™ and Y € RF*"

@ A > 0is a parameter.
Remark

min [R=XTY[[F+A (| X[+ [Y]F)
XeR X"’,YE]RkX”
= min ||R— Z|}+2A||Z]]..

Z:rank Z<k
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Alternative Least Square (ALS)
Alternative Least Square (ALS)

Given initials Xy, Yp, for t =0,1,2, ..., we solve the following two
sub-problem alternatingly:

Xi41 = argmin||R — XTY[|7 + A XIIZ,
X

Y1 = argmin|[R — Xeyr Y7 + A7
Y

We iterate until convergence.
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Solving Alternative Least Square

Define
F(X) = [IR" = Y; "X} + A[IX] 3.
Then
VF(X) = -2Y;(RT =Y, TX) + 2AX.
Let VF(X) = 0, we have
(Y1Y; " +ADX = Y;R".
Therefore, we obtain the solution

X1 = (VT +ADTYRT.
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Solving Alternative Least Square

Similarly, we can get
Yi1 = (Xt+1Xt+1T + M)_lXtHR.

Therefore, the iterative scheme can be posed as follows:

-1
Q Xy = (YthT +/\1) Y;RT,

. 1
Q Vi1 = <Xt+1Xt+1 +AI) Xi+1R.
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Alternative Least Square (ALS)
Matrix Factorization

Let Q) = {(Z,]) ’ Ri,]' > 0} and

Aji if(i,j) € Q
Pa(A)ij=14"
Pa(A)l; {o if (i,j) ¢ O
Problem
min [ Pa(R = X Y) |+ A (IXIIE + [ Y]7),
where

@ Re R"™" X ¢ RF*™ and Y € Rk*7,

@ A >0 is a parameter.
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Matrix Factorization

Problem
min [|P(R — XTY) |+ A (X3 + | YI3)

Its equivalence to

m n
min Z rij = xiTyj)ZJr?»(EH%H%ZH%H%),
i=1 i=1
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Solving Alternative Least Square

For fixed i, we define
Tov v 2
F(xi) = ), (rij—yj x)* + ) [nll3.
(i,j)eq i=1

Then

VE(xi) = =2 Y yi(rij—y] xi) +27x;.
(i,j)eQ

Letting VF(x;) = 0, we have

Z y]y]'l' + Al | x; = TiiY;-
(1,j)eQy
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Solving Alternative Least Square

Algorithm (ALS)

Q Initial x1,x2, ..., X, Y1, Y2, o) Y-
Q Fori=1,2,...,m:

Z y]y]T + Al | x; = 1ijYj.
(,j)eqy

@ Forj=12..,m

) xix; + AL Yj = 1ix;.
(i,j)eQ

© Repeat 2, 3 until convergence.
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Alterative Least Square (ALS)
Summary of ALS

@ The left-hand side of the linear system is sum of the rank 1 matrix.
@ There are (m + n) linear systems with k x k.
© The time complexity of the direct method is O(|Q[k? + (m + n)k3).
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_ Soft Impute Alternative Least Square (SIALS)
Soft Impute Alternative Least Square (SIALS)

Problem
min [ Pa(R = X Y)|[E+ A (IXIF + | YIE).
Notice that
Pa(R—X"Y) =Pa(R) —Pa(X'Y)+ XY - XTY.
Let
R="Pq(R) —Pa(X'Y)+X"Y.
Then the problem becomes

min IR = XTY[2 4+ A (X3 + [Y]3)
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Soft Impute Alternative Least Square (SIALS)

SIALS method

Given an initial Xg, Yy, for t = 0,1, ..., we solve the following two
sub-problem alternatingly:

Rt+% - PQ(R) - PQ(XtTYt) —|— XtTYt,
-1 _
X1 = (YthT + /\I> YtR;_%;
Rit1 = Pa(R) = Pa(Xig1 ' V) + X1 ' Y,
-1 .
Yip1 = (Xt+1Xt+1T + M) Xi+1Rp41-

We iterate until convergence is achieved.
J.-W. Liao et. al. (NYCU)
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_ Soft Impute Alternative Least Square (SIALS)
Solving SIALS by SVD

Idea (rank k approximation) !

R=UZV' =~ UDV; = (DU (D) = XY,

Goal

Given Uy € R"™ K with orthonormal columns, Dy = Iywx, and Vo = O, k.
We use the Iterative method to find the suitable X = DtUtT, Y = DtVtT
such that

min | Pa(R = XTY) [+ A (X3 + [ YI3).

LT, Hastie, R. Mazumder, J.-D. Lee and R. Zadeh, Matrix Completion and Low-Rank
SVD via Fast Alternating Least Squares, Journal of Machine Learning Research (2015).
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_ Soft Impute Alternative Least Square (SIALS)
Soft Impute ALS by SVD

Given Uy € R™*k with orthonormal columns, Dy = Iik, and Vy = Ogyx.
Let Xo = Dolp' and Yo = DoV '. For t =0,1,... do

(1] Rt+% = Pa(R) — PQ(XtTYt) + XY
-1
T -
@ X, = (¥ +l) Y.R],,
© Find the SVD of DtXt+%, then get Ut+1/Dt+%
Q Xi = DH%UHlT
9 Rt+1 — PQ(R) - PQ(Xt+]TYt) —|' Xt+1TYt
-1 5
0V, = (Xt+1Xt+1T +/\1) Xi+1Ri41
@ Find the SVD of Dt+%Yt+%' then get Vi1, Diiq
Q@ Vi1 =Di1Vipr !
J.-W. Liao et. al. (NYCU) Low Rank Matrix Factorization December 29, 2021

26 /41



_ Soft Impute Alternative Least Square (SIALS)
Soft Impute ALS

Let S = Pq(R) — Pa(X:"Y;). We have R = S+ X; " Y;.
We use X; = DtUtT and Y; = DtV,gT to plug in equation 2. Then
X

1= (D2+AD T DVTST 4 (D2 +AI) ' D2X:.

NI—=

Similarly, we also have

-1 -1
— 2 T 2 2
Yoy = (D2, +AL) Dy Ui S+ (D2, +AI) Dy
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Soft Impute Alternative Least Square (SIALS)

Solving SIALS by SVD

Algorithm (SIALS)

@ Initial: R € R™*" U € R™*k with orthonormal columns, D = Weseties
V=0,xt, X=DU" and Y =DV,

S PQ(R) — PQ(XTY)

X+ (D24 A1) DVTST + (D2 4 AI) ' D2X

U,D «+ SVD(DX), X < DU’

S+ PQ(R) — pQ(XTY)

Y < (D2 +AI)" DUTS + (D*+AI) "' D?Y

D,V < SVD(DY), Y < DV

Repeat 2-7 until convergence.

Output: U,V,D

0000 000 O
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Experience and Result

Outline

@ Experience and Result
@ ml-Im
@ ml-10m
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Experience and Result ml-Im

Information of Dataset: ml-1m

@ number of data: 900,188
@ number of user: 6,040
@ number of movie: 3,952
@ sparsity: 3.77%
@ train-test split: 9 to 1
200 User views Movie views

. “‘

0 200 400 600 800 1000 o 200 400 600 800 1000
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Experience and Result ml-Im

Time Elapsed
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L
Objective

OBJECTIVE OBJECTIVE
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Experience and Result ml-1m

Metrics

We use the following metrics to evaluate our methods:
@ Root Mean Square Error (RMSE):

- X — Y2
RMSEq (X, Y) = \/ L(ij)e0 ||er il

@ Mean Absolute Error (MAE):

Yijeo | Xij— Yijl
1O

MAEq(X,Y) =
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Experience and Result ml-Im

Evaluation

RMSE RMSE
2 2
18} 18
SIALS [/ SVD)
16 16
14 14
12
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A=5,d=50 A=20,d=50
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Experience and Result ml-1m

Evaluation

Metrics RMSE MAE

Type Training | Testing | Training | Testing
ALS 0.5542 | 0.9545 | 0.4363 | 0.7385
SIALS (w/o SVD) || 0.5745 | 0.9624 | 0.4517 | 0.7441
SIALS (w/ SVD) 0.8928 | 0.9099 | 0.7017 | 0.7143

A =5, d =50 with 600 epochs

Metrics RMSE MAE

Type Training | Testing | Training | Testing
ALS 0.7288 | 0.8778 | 0.5727 | 0.6889
SIALS (w/o SVD) || 0.7330 | 0.8820 | 0.5749 | 0.6913
SIALS (w/ SVD) 0.8980 | 0.9147 | 0.7101 | 0.7229

A =20, d = 50 with 600 epochs
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Experience and Result ml-10m

ml-10m dataset

@ number of data: 9,000,048

@ number of user: 71,567

@ number of movie: 65,133

@ sparsity: 0.19%

@ train-test split: 9 to 1
Metrics RMSE MAE
Type Training | Testing | Training | Testing
ALS 0.7287 | 0.8453 | 0.5453 | 0.6479
SIALS (w/ SVD) || 0.9301 | 0.9454 | 0.7171 | 0.7286

A =50, d = 100 with 500 epochs
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mi-10m
Prediction of SIALS

We compute 7;; = x;—yj, and list the prediction as the following:

(user, movie) | prediction | rounding | rating
(308, 1707) 1.5211 2 2

(990, 89) 2.7883
(2247, 2291) | 4.0016
(2454, 595) 3.8591
(2853, 3363) 3.7680
(
(
(
(
(

3067, 703) 1.0212
3317, 3793) | 4.1885
3727, 2259) | 2.2826
4796, 2761) | 4.1454
5451, 969) | 4.4651

A RN ANDADAPAW
GO AN RRL, DWW WW
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Outline

© Summary
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Summary

Summary

In this project, we implement ALS, SIALS to do the matrix factorization.
We use the direct method and CG to solve ALS and use SVD to solve
SIALS and then apply it to the recommender system.

Further Topics:
@ Stochastic Gradient Descent (SGD)
e Nonnegative Matrix Factorization (NMF)
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Summary
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THE END

Thanks for listening]!
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