DiffMusic: A Zero-shot Diffusion-Based Framework for Music Inverse Problem

Is Training All You Need?

Jia-Wei Liao

Pin-Chi Pan

Sheng-Ping Yang

National Taiwan University

https://github.com/jwliao1209/DiffMusic

DeepMIR Final Project

Outline

- Introduction
- Proposed Method
- Experiments and Demo
- Summary

Introduction

- Motivation
 - Enhancing music processing quality and application diversity.
 - Designing the method without training or fine-tuning under limited computational resources.
- **Goal:** Developing a zero-shot diffusion-based framework to address music related inverse problems, such as music inpainting, super-resolution, phase retrieval, source separation, and music dereverberation.

Innovation Contribution

- We propose a **training-free** diffusion-based framework capable of addressing music inverse problems within 1 minute.
- We introduce a Vocoder-Mel Constraint (VMC) to enhance the quality of generated music.
- Our pipeline enables iterative refinement through sampling processes with a pretrained model (e.g. AudioLDM2, MusicLDM) and supports plug-and-play adaptability, expanding its applications in the music domain.

NTU EECS

DeepMIR Final Project

Sampling with Iterative Refinement

NTU EECS

Proposed Pipeline

Key Design:

Decoder: Project latent to manifold tangent space **VMC:** Preserve the quality of audio

Algorithm 1 DiffMusic

1: **Input:** Measurement y, UNet $\epsilon_{\theta}(\cdot)$, VAE decoder $\mathcal{D}(\cdot)$, wave to mel spectrogram transformation T, vocoder $\mathcal{V}(\cdot)$, sequence of noise schedule $\{\bar{\alpha}_t\}_{t=1}^T$, learning rate $\gamma > 0$.

2:
$$\mathbf{z}_{T} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
.
3: for $t = T$ to 1 do
4: $\hat{\mathbf{z}}_{0|t} \leftarrow \frac{1}{\sqrt{\bar{\alpha}_{t}}} (\mathbf{z}_{t} - \sqrt{1 - \bar{\alpha}_{t}} \epsilon_{\theta}(\mathbf{z}_{t}, t))$.
5: $\hat{\mathbf{x}}_{0|t} \leftarrow (\overline{T} \circ \mathcal{V}) \circ \mathcal{D}(\hat{\mathbf{z}}_{0|t})$.
6: $\hat{\mathbf{z}}_{0|t}^{*} \leftarrow \hat{\mathbf{z}}_{0|t} - \gamma \nabla_{\hat{\mathbf{z}}_{0|t}} \|\mathbf{A}\hat{\mathbf{x}}_{0|t} - \mathbf{y}\|_{F}^{2}$.
7: $\hat{\epsilon}_{t} \leftarrow \frac{\mathbf{z}_{t} - \sqrt{\bar{\alpha}_{t}} \hat{\mathbf{z}}_{0|t}^{*}}{\sqrt{1 - \bar{\alpha}_{t}}}$.
8: $\mathbf{z}_{t-1} \leftarrow \sqrt{\bar{\alpha}_{t-1}} \hat{\mathbf{z}}_{0|t}^{*} + \sqrt{1 - \bar{\alpha}_{t-1}} \hat{\epsilon}_{t}$.
9: end for
0: return $(\mathcal{V} \circ \mathcal{D})(\mathbf{z}_{0})$.

Inverse Problem: Music Inpainting

Filling in missing or damaged parts of a musical piece to restore continuity and maintain its original style.

Inverse Problem: Super-Resolution

Enhancing the quality of audio signals by reconstructing high-resolution audio from low-resolution input.

Inverse Problem: Phase Retrieval

Reconstructing a complete audio signal by estimating its phase from spectral amplitude.

Inverse Problem: Source Separation

Removing noise or isolating specific audio elements (e.g., vocals, instruments) from a mixed signal.

$$\mathcal{L} = \|w\mathbf{x}_1 + (1-w)\mathbf{x}_2 - \mathbf{y}\|_F^2$$

Inverse Problem: Music Dereverberation

Removing reverberation effects to recover a clean audio signal, free from echoes caused by room reflections.

Experiments

Dataset: Musdb18 100 songs

Model: AudioLDM2, MusicLDM

• LSD: Log Spectral Distance

 $\frac{1}{N} \sum_{n=1}^{N} \sqrt{\frac{1}{K} \sum_{k=1}^{K} \left(\log |X_{\text{rec}}(n,k)| - \log |X_{\text{gt}}(n,k)| \right)^2}$

• FAD: Fréchet Audio Distance

$$\|\mu_{\mathrm{rec}} - \mu_{\mathrm{gt}}\|^2 + \mathrm{Tr} \left(\Sigma_{\mathrm{rec}} + \Sigma_{\mathrm{gt}} - 2 \left(\Sigma_{\mathrm{rec}} \Sigma_{\mathrm{gt}} \right)^{1/2} \right)$$

Inverse Problem	Methods	AudioLDM2		MusicLDM	
		LSD↓	$FAD\downarrow$	LSD \downarrow	FAD \downarrow
2	DPS	0.6207	6.4334	0.6318	5.1730
Music Inpainting	DSG	0.7699	13.8478	0.7735	14.0801
	DiffMusic (Our)	0.6341	4.9896	0.6367	4.3202
	DPS	0.9815	9.2984	0.9351	7.9806
Super Resolution	DSG	1.3427	15.0559	1.2783	17.1117
	DiffMusic (Our)	0.9678	8.9296	0.9778	5.8756
	DPS	0.8180	7.7626	0.7653	6.7907
Phase Retrieval	DSG	0.8258	14.6598	0.8873	16.4876
	DiffMusic (Our)	0.8323	6.2551	0.8939	4.6492
	DPS	0.9350	7.9542	0.9603	5.8537
Source Separation	DSG	0.8241	14.0942	0.9120	16.9260
	DiffMusic (Our)	0.8293	6.2551	0.9334	4.9374
	DPS	0.6837	7.8759	0.7536	5.7646
Music Dereverberation	DSG	0.7560	13.8926	0.8308	16.7926
	DiffMusic (Our)	0.6604	7.1838	0.6788	4.8319

[DPS] Diffusion Posterior Sampling for General Noisy Inverse Problems [DSG] Guidance with Spherical Gaussian Constraint for Conditional Diffusion

Demo Case: Super Resolution

Demo Case: Music Inpainting

DeepMIR Final Project

Demo Case: Phase Retrieval

Demo Case: Dereverberation

- 1. We propose DiffMusic, a zero-shot diffusion-based framework, designed to solve various music inverse problems.
- 2. Leverages pretrained models for zero-shot conditional generation, provide 5 operation to enable flexible music processing without extensive fine-tuning.
- 3. Experimental results show flexible performance across different tasks, highlighting DiffMusic's potential in enhancing music restoration and multi-task generation.

Thank you

