Application of Optimal Mass Transportation to Medical Image Analysis

Jia-Wei Liao Advisor: Wen-Wei Lin

Department of Applied Mathematics National Yang Ming Chiao Tung University Geometry Information and Medical Image Lab

April 29, 2022

Jia-Wei Liao (NYCU GIMI Lab) [2022 NCTS Student Workshop](#page-26-0) April 29, 2022 1/27

 \rightarrow 4 \equiv \rightarrow

∢ ロ ▶ ィ 何 ▶ ィ

2 [Related work](#page-5-0)

3 [Methods](#page-14-0)

4 [Experiment results](#page-18-0)

5 [Conclusion](#page-23-0)

 $\mathbf{A} = \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

- **[Related work](#page-5-0)**
- **[Methods](#page-14-0)**
- **[Experiment results](#page-18-0)**

イロト イ部 トイヨ トイヨト

Introduction

RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS)

Flair

Whole Tumor

Tumor Core

Enhace Tumor

Table 1: The label of WT, TC, and ET.

 \rightarrow \equiv \rightarrow

Þ

← ロ → → ← 何 →

Introduction

- **1** Motivation: reduce memory usage and keep global information
- **2 Idea:** map irregular domain to regular domain
- **3 Difficulty:** high conversion loss

 $240 \times 240 \times 155$

 $128 \times 128 \times 128$

Figure 1: An illustration for the OMT

イロト イ押ト イヨト イヨト

[Methods](#page-14-0)

[Experiment results](#page-18-0)

[Conclusion](#page-23-0)

Optimal Mass Transportation

OMT Problem

Let (X, u) , (Y, v) be two measurable spaces which have the same total mass $\int_X 1 d\mu = \int_Y 1 d\nu$. Let F be the set of measure-preserving maps and $c: X \times Y \rightarrow [0, \infty]$ be a cost function of transportation. The OMT problem is to find a map $f^*\in\mathcal{F}$ that minimizes the transportation cost

$$
f^* = \underset{f \in \mathcal{F}}{\arg \min} \int_X c(x, f(x)) d\mu.
$$

Discrete OMT

Definition (Discrete OMT Problem)

The discrete OMT problem with respect to $\|\cdot\|_2$ can represent as

$$
\mathbf{f}^* = \argmin_{\mathbf{f} \in \mathbb{F}_{\mu_V}} \sum_{i=1}^{n_v} ||v_i - \mathbf{f}_i^*||_2^2 \mu_V(v_i)
$$

where the local measure at the vertex *v* is

$$
\mu_V(v) = \frac{1}{4} \sum_{v \subset \tau, \tau \in \mathcal{T}(\mathcal{B})} \mathrm{vol}(\tau) \cdot \rho(v)
$$

and the space of mass-preserving map is

$$
\mathbb{F}_{\mu_V} = \left\{ \begin{array}{c} \textbf{f} \in \mathbb{R}^{n_v \times 3} \, \Big| \, \begin{array}{c} \textbf{f is the inducing matrix for a mass-preserving} \\ \text{map } f : (\mathcal{B}, \mu_V) \rightarrow (\mathcal{C}, \text{vol}) \end{array} \right\}
$$

.

Discrete OMT

OMT steps

- **•** Solve the boundary map by projection gradient method.
- **2** Solve the interior map by homotopy method.

イロト イ押 トイヨ トイヨ トー

目

Solving the boundary map by projection gradient method

Definition (Spherical OMT Problem)

$$
\mathbf{g}^* = \argmin_{\mathbf{f} \in \mathbb{G}_{\mu_S}} \sum_{i=1}^{n_B} ||v_i - \mathbf{g}_i^*||_2^2 \,\mu_S(v_i)
$$

where the space of mass-preserving map is

$$
\mathbb{G}_{\mu_S} = \left\{ \begin{array}{c|c} \mathbf{g} \in \mathbb{R}^{n_B \times 3} & \mathbf{g} \text{ is the inducing matrix for a mass-preserving} \\ \text{map } g : (\partial \mathcal{B}, \mu_S) \rightarrow (\mathbb{S}^2, \text{area}) \end{array} \right.
$$

 \mathcal{L}

[Related work](#page-5-0)

Solving the boundary map by projection gradient method

Definition (Spherical OMT Problem)

$$
\mathbf{g}^* = \argmin_{\mathbf{f} \in \mathbb{G}_{\mu_S}} \sum_{i=1}^{n_B} ||v_i - \mathbf{g}_i^*||_2^2 \,\mu_S(v_i)
$$

where the local measure at the vertex *v* as

$$
\mu_S(v) = \frac{1}{3} \sum_{v \subset \tau, \tau \in \mathcal{F}(\partial \mathcal{B})} \text{area}(\tau) \cdot \rho(v).
$$

Jia-Wei Liao (NYCU GIMI Lab) [2022 NCTS Student Workshop](#page-0-0) April 29, 2022 11/27

 200

(□) () (

Solving the boundary map by projection gradient method

Let \mathcal{P}_* be a projection operator. Then \mathbf{g}^t can update by

$$
\mathbf{g}^{t+1} = \mathcal{P}_{\mathbb{G}_{\mu_S}}(\mathbf{g}^t - \eta^t \nabla C(\mathbf{g}^t))
$$

where the cost function $C(\mathbf{g}) = \sum_{i=1}^{n_{\text{B}}}$ $\frac{n_{\rm B}}{n_{i-1}}\|v_i - \mathbf{g}^*_i\|_2^2$ $\mu_S(v_i)$ and the learning rate *η* is chosen by line search.

Projection operator

- Normalize to spherical $g(v) \leftarrow \frac{g(v)}{\|g(v)\|_2}.$
- ² Compute the spherical mass-preserving parameterization with *g* as initial.
- ³ Adjust the optimal rotation by SVD.

KOD KAR KED KED E VAN

[Related work](#page-5-0)

Solving the boundary map by projection gradient method

- ¹ Compute the spherical OMT map *g*¹ : *∂*B → **S** ² with density *ρ*.
- ² Compute the spherical OMT map *g*² : *∂*C → **S** ² with area-preserving.
- Compose the map by $g = g_2^{-1} \circ g_1$.

Jia-Wei Liao (NYCU GIMI Lab) [2022 NCTS Student Workshop](#page-0-0) April 29, 2022 13 / 27

[Related work](#page-5-0)

Solving the interior map by homotopy method

Let
$$
0 = t_0 < t_1 < \ldots < t_p = 1
$$
 be the *p* piece of [0, 1] and\n
$$
\mathbf{f}_{\mathrm{B}}^{(k)} = (1 - t_k)V_{\mathrm{B}} + t_k \mathbf{g}
$$

be the homotopy of boundary map. We solve the interior map by

$$
[L_V(f^{(k-1)})]_{\mathrm{I},\mathrm{I}}\mathbf{f}_{\mathrm{I}}^{(k)} = -[L_V(f^{(k-1)})]_{\mathrm{I},\mathrm{B}}\mathbf{f}_{\mathrm{B}}^{(k)}.
$$

[Related work](#page-5-0)

3 [Methods](#page-14-0)

[Experiment results](#page-18-0)

[Conclusion](#page-23-0)

イロト イ部 トイヨ トイヨト

Two-Phase training process

Figure 4: Two-Phase training flowchart

Jia-Wei Liao (NYCU GIMI Lab) [2022 NCTS Student Workshop](#page-0-0) April 29, 2022 16 / 27

Þ \sim

 \rightarrow \equiv \rightarrow

∢ ロ ▶ ィ 何 ▶ ィ

э

Density function

Let *I* be the grayscale of flair, HE be the histogram equalization. **1 Phase 1 OMT density function:**

$$
\rho_1(v) = \exp(\gamma \cdot \text{HE}(I(v))), v \in \mathcal{B}
$$

2 Phase 2 OMT density function:

$$
\rho_2(v) = \begin{cases} \exp(\gamma \cdot \text{HE}(I(v))), & \text{if } v \in \mathcal{R} \\ 1.0, & \text{if } v \in \mathcal{B} \setminus \mathcal{R} \end{cases}
$$

Figure 5: Region of density

Jia-Wei Liao (NYCU GIMI Lab) [2022 NCTS Student Workshop](#page-0-0) April 29, 2022 17 / 27

ミドイミドー

∢ ロ ▶ ィ 何 ▶ ィ

[Methods](#page-14-0)

Model architecture

Figure 6: Multi-Head UNet (MHUNet) architecture

Jia-Wei Liao (NYCU GIMI Lab) [2022 NCTS Student Workshop](#page-0-0) April 29, 2022 18 / 27

イロメ イ母メ イヨメ イヨメー

造

[Methods](#page-14-0)

4 [Experiment results](#page-18-0)

[Conclusion](#page-23-0)

重

 299

Conversion loss

Let Y be the ground truth, $T : \mathcal{B} \to \mathcal{C}$ be the OMT map, and $T^{-1}:\mathcal{C}\rightarrow\mathcal{B}$ be the inverse OMT map. We defined the conversion loss

$$
1 - \frac{2|Y \cap (T^{-1} \circ T)(Y)|}{|Y| + |(T^{-1} \circ T)(Y)|}
$$

Table 2: Conversion loss of data.

イロト イ母 トイヨ トイヨ トー

Ε

OMT data visualize

Table 3: Proportion of tumor in brain

Jia-Wei Liao (NYCU GIMI Lab) [2022 NCTS Student Workshop](#page-0-0) April 29, 2022 21 / 27

医单头 人

∢ ロ ▶ ィ 何 ▶ ィ

Validation result

Let *P*, *G* be a prediction and ground truth. The dice similarity coefficient (DSC) is defined as

$$
\text{DSC}(P, G) = \frac{2|P \cap G|}{|P| + |G|}
$$

Table 4: DSC of validation dataset

Test result

Table 5: DSC of testing dataset

Figure 8: Box plot of DSC of testi[ng](#page-21-0) [da](#page-23-0)[ta](#page-21-0)[se](#page-22-0)[t](#page-23-0)

Jia-Wei Liao (NYCU GIMI Lab) [2022 NCTS Student Workshop](#page-0-0) April 29, 2022 23 / 27

비둘 비

Þ

K.

重

 299

(ロ) (d)

- **[Related work](#page-5-0)**
- **[Methods](#page-14-0)**
- **[Experiment results](#page-18-0)**

イロト イ部 トイヨ トイヨト

Conclusion

- **1** OMT map an object from an irregular domain to a regular domain, which reduce memory usage and keep global information.
- ² OMT can generate data augmentation by using the different parameters of density.
- ³ We propose the Two-Phase training process.

イロト イ押 トイヨ トイヨ トー

Reference

- ¹ M.-H. Yueh, T.-M. Huang, T. Li, W.-W. Lin, and S.-T. Yau, "Projected gradient method combined with homotopy techniques for volume-measure-preserving optimal mass trans-portation problems," J. Sci. Comput., no. 64, 2021.
- ² W.-W. Lin, C. Juang, M.-H. Yueh, T.-M. Huang, T. Li, S. Wang, and S.-T. Yau, 3D Brain Tumor Segmentation Using a Two-Stage Optimal Mass Transport Algorithm, Scientific Reports, 11, 14686, 2021. https://doi.org/10.1038/s41598-021-94071-1
- ³ O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in International Conference on Medical image computing and computer-assisted intervention. Springer, 2015, pp. 234–241.

[Conclusion](#page-23-0)

Thanks for listening!

Jia-Wei Liao (NYCU GIMI Lab) [2022 NCTS Student Workshop](#page-0-0) April 29, 2022 27 / 27

K ロ ト K 何 ト K ヨ ト K ヨ ト

 Ω

 \Rightarrow