
2022 AI CUP Competition:
Spread Through Air Spaces Segmentation

Jia-Wei Liao, Kuok-Tong Ng, Yi-Cheng Hung

Department of Applied Mathematics, NYCU

February 4, 2024

Abstract

There are many tasks about pattern recognition in computer vision, such as image

classification, object detection, semantic segmentation, and so on. They are widely used

in medical image analysis. In this competition, we implement the deep learning-based

techniques to do the Spread Through Air Spaces (STAS) Segmentation. We use the UNet

with the backbone of EfficientNet, which is the state-of-the-art semantic segmentation

model. UNet is proposed in 2015. It is an encoder-decoder-based model which can

extract the critical features and recover the label of the goal. EfficientNet is proposed

in 2020. The Google researcher through the Neural Architecture Search (NAS) to find

the best model based on performance. So we use it as a feature extractor. After our

experiment, we got a public score of 0.913332. Then we attempted to design the post-

processing. Finally, the public score raises to 0.920027, and we got the rank of 3. Un-

fortunately, our best private score only had 0.910871, and our ranking dropped to 16th.

We release the code to GitHub. It is available at https://github.com/YCHung1998/

Spread-Through-Air-Spaces-Segmentation.git.

1

https://github.com/YCHung1998/Spread-Through-Air-Spaces-Segmentation.git
https://github.com/YCHung1998/Spread-Through-Air-Spaces-Segmentation.git

Contents

1 Introduction 4

1.1 Data Exploration . 5

1.2 Difficulties . 6

2 Related Work 8

3 Proposed Approach 9

3.1 Data Pre-processing . 9

3.1.1 Create image mask file . 9

3.1.2 Splitting training and validation set in 5-fold 9

3.2 Data Transform and Augmentation . 10

3.2.1 H & E staining extract . 10

3.2.2 Auto-augmentation . 11

3.2.3 Random Add Noise . 12

3.2.4 Random FlipLR or FlipUD . 12

3.2.5 Padding . 12

3.3 Model Architecture . 12

3.3.1 Encoder and Bridge . 13

3.3.2 Decoder . 15

3.4 Loss Function . 16

3.4.1 Dice Loss . 16

3.4.2 Focal Loss . 16

3.4.3 Deep Supervised . 17

3.5 Optimization . 18

3.6 Learning Rate Scheduler . 18

3.7 Metrics . 18

3.8 Post Processing . 19

4 Experimental Analysis and Conclusion 22

2

A Environment 27

B Cloud Calculation 29

B.1 Our Experience . 31

C Contact Information 32

3

Chapter 1

Introduction

The competition is about tumor airway diffusion detection in pathological section im-

ages of lung adenocarcinomas. It period from April 6th to June 1st in 2022. Semantic

segmentation will be used to identify lung adenocarcinomas’ pathological features. By

integrating deep learning for pathological analysis and analyzing pathological tumor im-

ages in conjunction with artificial intelligence, the wealth of tumor-related information

that can be gathered can be applied to clinical medicine in order to aid doctors. Spread

through air spaces (STAS) is a newly discovered pathological feature of lung adenocarci-

noma in recent years, which refers to the spread of tumor cells from the edge of the STAS

along the alveolar cavity to adjacent normal lung tissue. For segmentation, we will pro-

cess 1053 stained sections of size 1716× 942× 3. We aim to train a segmentation model

using the EfficientNet backbone to segment STAS regions through routine preprocessing

model training, cross-validation, and a final inference using test time augmentation and

aggregated model predictions.

(a) image (b) mask

Figure 1.1: STAS image 169.jpg image and mask 169_mask.png

4

1.1 Data Exploration

According to the exploration mask data, all data labels are not empty in the sample, and

the mask has several simple objects (which we called ”targets”). We know that most

images have at least one object in the label, and a few data have more than ten objects.

(a) (b)

Figure 1.2: Histogram

We count down the number of each target pixel in the mask and display them as a

boxplot in Figure 1.3. Mask pixels range from 1 to 531,379, and some of the labels might

not be connected.

Figure 1.3: Box plot

To begin with, we only have training images. In the days leading up to the compe-

tition’s end, more information was released, and now there are Training images, Public

images, and Private images. First, we split the 1,053 data into a training set and a testing

set. 12.6% of the data is used for testing, and the remaining 87.3% is used for training.

We use a 5-fold cross-validation strategy for training. The proportion is shown in Figure

1.4. On the previous statistical chart, we presented the target area to image size ratio, and

then we grouped the data at seven intervals. Ensure each group of data exists in each fold

and test set.

5

(a) Pie plot (b) Bar plot

Figure 1.4: Pie plot and bar plot

Compared to public and private images, the former ones contain 131 images and the

latter ones contain 184 images, training data are all labeled. In contrast, public image and

private image do not with label. Moreover, the public prediction score can be obtained by

uploading the prediction results, while the private prediction score will not be published

until the end of competition.

Figure 1.5: Pie plot

1.2 Difficulties

The following are obstacles when carrying out this project:

1. There are various sizes of targets in the mask: The smallest object is only 1 pixel,

while the largest one is as large as 531,379 pixels. If setting a threshold to remove

those target pixels of predictions below it, FN (False Negative) will rise, and label

information may be lost when the image is resized to a small image. Therefore, this

scheme needs to pad the original data to reduce the loss of information.

2. Some Label masks are either close to the border or close to the corner: Since the

lung slice image is an image obtained by a high-magnification electron microscope,

6

the data is formed by splitting into multiple photographs. It is inherently possible

to split the target in two when generating multiple images, which adds some diffi-

culties in prediction.

(a) 491.jpg (b) 786.jpg (c) 760.jpg (d) 300.jpg

(e) 491_mask.png (f) 786_mask.png (g) 760_mask.png (h) 300_mask.png

Figure 1.6: Training images and corresponding masks

7

Chapter 2

Related Work

Semantic segmentation is an important topic in computer vision. In 2014, Fully Convo-

lutional Networks (FCN) [6] has been proposed. FCN substitute the fully conneted layer

(last layer) by transposed convolution layer in the classification model. Therefore, the

model can accept variant size of input image and can be trained end-to-end. FCN has

establish the foundation of semantic segmentation models. In 2015, UNet [8] has been

proposed. UNet use a symmetric encoder-decoder structure, which means the decoder

part is more robust than FCN. Moreover, skip connection between encoder and decoder

that can keeps the finer feature (from the encoder), mitigate the problem of information

loss that FCN faced.

UNet has beenwidely used inmedical image segmentation. There aremany variant of

UNet in this recent years. For example, inspired by ResNet and DenseNet, ResUNet [?]

and DenseUNet [2] has been proposeed in 2018. nnUNet (no-new-Net) [4] proposed in

2019, which concentrate on data pre-processing, training scheme and inference-scheme

and get a great improvement. This proves the importance of understanding of the data.

TransUNet [1], which proposed in 2021, try to enhance the encoder part by combining

CNN and transformer.

8

Chapter 3

Proposed Approach

3.1 Data Pre-processing

3.1.1 Create image mask file

In Figure 3.1, we shows the original annotation data which is converted to the segmen-

tation mask.

Figure 3.1: JSON format

3.1.2 Splitting training and validation set in 5-fold

There are 1,053 first-hand training materials divided into training sets and test sets. We

use 5 folders to manage training sets and take one of the folders as a validation set at a

9

time. Training set, validation set and test set account for 69.90%, 17.47% and 12.63%,

respectively.

3.2 Data Transform and Augmentation

Hematoxylin and eosin staining (H & E staining) procedure is the principal method in

histology. The hematoxylin stains cell nuclei purplish blue, and eosin stains the extra-

cellular matrix and cytoplasm pink. We follow this property and apply the approach,

[7], to increase the diversity of our train dataset. According to the table below, we can

understand different dyes with corresponding properties and effects.

Stain Hematoxylin Eosin stain
Properties of Dye Basic Acidic
Dyed Color Blue Pink-red
Where the color appears nucleus (basophilic) cytoplasm (eosinophilic)

Table 3.1: H & E

3.2.1 H & E staining extract

Translate the RGB image to optical density (OD) value space, and divide it into the two

primary colors by solving the singular value decomposition (SVD).

Algorithm H & E Stain Extraction
1: Set: α = 1, β = 0.15, and I0 = 240
2: Input: RGB image I

3: Convert RGB image I to OD density space OD = − log10

(
I

I0

)
.

4: Remove data with OD intensity less than β
5: S = V −1OD ⇐ OD = V S
6: Project data onto the plane, and normalize to unit length
7: Calculate angle of each point wrt the first SVD direction
8: Find robust extremes (αth and (100−α)th percentiles of the angle)
9: Convert extreme values back to OD space
10: return norm, H, and E images

10

(a) RGB space (b) OD space

Figure 3.2: RGB space vs OD space: The left is the RGB space, and the right is the
OD space by observing the two spaces below. Converting an RGB image to OD (optical
density) space is more efficiently represented by combining two principal vectors. We
need to give a threshold and find the combination coefficients.

Here we take (a) norm image and (b) H image in training process. Let’s look at the

effect presented below. It’s clear that nucleus present on H images. Moreover, there will

be no overly vivid colors on the Norm image (compare to original image in id 297).

(a) Image (b) Mask

(c) Norm Image (d) H Image (e) E Image

Figure 3.3: Augmentation data of 297.jpg

3.2.2 Auto-augmentation

The method of adding data based on reinforcement learning, adding an automatic aug-

mentation strategy, establishes multiple sub-strategies under the strategy to make the data

change in different color type or geometric type.

Here, we divide transform into two categories. One is for eight color transforma-

tions. The other is based on five geometric transformations. 2 of 13 are merged into

11

sub-strategies, and 25 kinds of sub-strategies are combined. Select sub-policies with

uniform probability in each mini-batch as the data augmentation method.

Color Space Transform Geometry Transform
Brightness Invert Rotate
Color Equalize TranslateX

Contrast Solarize TranslateY
Autocontrast Posterize ShearX

ShearY

Table 3.2: Auto-augmentation

3.2.3 Random Add Noise

To increase the generalization of our model, We add the noise with probability by I(i, j)+

σ · s, where s ∼ N (0, 1) and I is the grayscale.

3.2.4 Random FlipLR or FlipUD

Random flip photos horizontally or vertically. Separated from auto augmentation to avoid

doing two equivalents without making changes.

3.2.5 Padding

In order to be divisible by 32 and maintain the original image ratio, we pad it from a size

of 1716× 942 to 1728× 960.

3.3 Model Architecture

In this task, we adopt a UNet based model. First, we may want to generalize the

architecture of UNet to a abstract topological structure. As shown in the figure below, we

may divide UNet architecture into three parts: Encoder, Bridge and Decoder. Therefore,

in the next subsections, we will introduce them one by one.

12

Figure 3.4: UNet architecture

Figure 3.5: Abstract topological structure of UNet

3.3.1 Encoder and Bridge

The goal of the encoder is to extract useful features. However, it is not necessary to

follow the encoder in the original UNet. Any CNN based networks (encoder) with down-

sample steps can be used as an encoder. Therefore, we may choose pre-trained model

as our encoder in order to get a better result. In this task, we choose ResNet [3] and

EfficientNet [9] as our encoder.

ResNet [3] has been widely used as a pre-trained backbone. It adopted residual learn-

ing to get a faster convergence. As shown in Figure [3.6, 3.7]. ResNet is composed by

residual blocks. Moreover, the deeper network will get a better performance. However,

the deeper network will be time consuming, we only try ResNet34 and ResNet50 in this

task.

13

Figure 3.6: Residual learning

Figure 3.7: ResNet architecture

EfficientNet [9] is proposed in 2019. Scaling up convolution network is widely used

to achieve better accuracy. For example, ResNet [3] scaling up the network’s depth

(ResNet18 to ResNet152). Wide Residual Network (WRN) [10] scaling up the network’s

width (increasing the number of output channels). Moreover, scaling up models by im-

age resolution also gives a better accuracy too. The goal of EfficientNet is to scaling up

depth/width/resolution simultaneously, as shown in Figure ??. Intuitively, scaling up all

of them makes sense. Once input image become larger, the model needs more layers to

ensure the receptive fields is large enough and more channels to capture more features.

Finally, EfficientNet gives a great accuracy, as shown in Figure ??.

14

Figure 3.8: Model scaling

Figure 3.9: EfficientNet accuracy

Both ResNet and Efficient has down-sampled five times, with the identity mapping,

we got six stages here, see Figure 3.10. The last stage of ResNet and EfficientNet will

be treated as the Bridge in Figure 3.5.

3.3.2 Decoder

For the decoder part, we follow the original UNet architecture. The only difference is

that the transpose convolution is replaced by nearest interpolation.

Combining the Encoder, Bridge and Encoder that we mentioned above, the model

architecture looks like the following Figure.

15

Figure 3.10: Model architecture

3.4 Loss Function

Let Y, Ŷ ∈ Rm×n be the ground truth with one-hot label and prediction. The last dimen-

sion of Y and Ŷ indicate the category. We use the linear combination with dice loss and

focal loss as the segmentation loss.

LSeg(Ŷ , Y) = LDSC(Ŷ , Y) + LFL(Ŷ , Y)

We will introduce in detail as the following.

3.4.1 Dice Loss

The dice loss is defined as

LDSC(Ŷ , Y) = 1−
2 ·

∑
i,j,c Yi,j,c · Ŷi,j,c∑

i,j,c Yi,j,c +
∑

i,j,c Ŷi,j,c

3.4.2 Focal Loss

The candidate object in a picture has most of the proportions of the background rather

than the foreground, so there will be an imbalance in calculating the loss. The focal loss

is down-weighted for the easy example. The hard example can be trained as much as

16

possible during the training process and ignored those easy examples. So it can solve the

category imbalanced problem. The focal loss [5] is defined as

LFL(Ŷ , Y) = −
∑
i,j

α
(
1− Ŷi,j,C

)γ

log Ŷi,j,C

where C is category of Yi,j and α, γ ≥ 0 are hyper-parameter.

Why the focal loss can address data imbalance? We believe that the data which rarely

appear would get the lower probability of ground class. On the contrary, the data which

frequent appear would get the high probability of ground class. Wewill explain the reason

why the focus loss can improve the data imbalance. First, we focus on the blue line and

purple link in the Figure 3.11. The blue line is cross-entropy loss which is the special case

of the focal loss. the purple line is focal loss with γ = 2. Compared with two lines, if

we set 0.2, 0.6 to the probability of ground truth class, the blue line would get 1.6, 0.5 of

the loss and the purple line would get 1.05, 0.05 of the loss. We discover the differences

of the purple line are more significant by the following equation 1.6
0.5

= 3.2 < 21 = 1.05
0.05

This shows the focal loss is able to highlight the data which perform worst, and it doesn’t

have to work hard on good performance data.

Figure 3.11: Focal loss

3.4.3 Deep Supervised

By computing loss functions on different decoder levels, deep supervision helps to im-

prove gradient flow. Let Y0, Y1, Y2 are outputs sequence of the last three decoder and

Y1, Y2, Y3 are downsampled using nearest neighbor interpolation to an half size ofY0, Y1, Y2.

The loss of deep supervised is defined as

LDS = L(Ŷ0, Y0) +
1

4
L(Ŷ1, Y1) +

1

16
L(Ŷ2, Y2)

17

3.5 Optimization

We use AdamW as the optimizer. It is a stochastic optimization method that modifies the

typical implementation of weight decay in Adam, by decoupling weight decay from the

gradient update. We give the algorithm as the following:

Algorithm AdamW
1: Input: f(θ) (objective), γ (lr), β1, β2, θ0, ε, λ (weight decay)
2: Initial: m0 ← 0 (first moment), v0 ← 0 (second moment),
3: for t = 1 to ... do
4: gt ← ∇θft(θt−1)
5: θt ← θt−1 − γλθt−1

6: mt ← β1mt−1 + (1− β1)gt
7: vt ← β2vt−1 + (1− β2)g

2
t

8: m̂t ←
mt

1− βt
1

9: v̂t ←
vt

1− βt
2

10: θt ← θt−1 − γ
m̂t√
v̂t + ε

11: end for
12: return θt

3.6 Learning Rate Scheduler

We tried step and cosine learning scheduler, their rate of change was concentrated in

different parts. The former with a high rate of change in the first 20 epochs and tends to

be stable in the remaining periods. The latter is smooth in the front and tail, decreasing

in the middle part.

• Step decay: Decay in each five step by 0.75 factor.

• Cosine decay: Use half of the cosine period to change the learning rate.

3.7 Metrics

In this task, the measurement indicator is evaluated on the mean dice coefficient. The

Dice coefficient is equivalence to the f1-score. When applied to Boolean data, using the

definition of true positive (TP), false positive (FP), and false negative (FN), it can be

written as

DSC =
2TP

2TP + FP + FN

18

Figure 3.12: Venn diagram of prediction and ground truth

3.8 Post Processing

First, inference with test time augmentation (TTA) enabled will typically take about 2-3X

the time of normal inference as the images are being up-down flipped, left-right flipped,

and processed. Next, average the predictions of each corresponding image and return the

probability mask. Final, we create an algorithm and convert the probability mask to a

binary mask by analyzing it thoroughly and taking that as our final guess.

To make description clear, we call a connected component in non-zero area ”target”

and call the union of connected targets ”mask” as shown in Figure 3.13.

Figure 3.13: Predicted image

1. Probability to Binary Selection: Given some thresholds to decide the probability

map’s value change to 0 or 1.

(a) Drop threshold: Only retain those prob. bigger than it in prediction mask.

(b) High threshold: Only concerned about those target which exist probability

higher than it in prediction mask.

(c) Lower threshold: According to previous interested target, screen out those

higher than lower threshold pixel.

19

We present the probability mask and convert to binary mask image below Figure

3.14.

(a) Probability mask

(b) Binary mask

Figure 3.14: Convert probability mask to binary mask

2. Morphological Image Processing: Apply the image closing morphology, doing

dilation and erosion in order to patch unconnected regions together and fill the holes.

Example is shown in Figure 3.15. In (a) is an original image, (b) fill the hole without

used image closing morphology, and (c) is with image closing.

(a) Image (b) w/o post-process (c) w/ post-process

Figure 3.15: Comparison of Public_003.jpg

20

3. Removal of the tiny targets: Once filled in, check each target and remove targets

with fewer than 250 target pixels in the mask.

4. Padding and Filling: To compensate for the same but unfillable boundaries as

the target, we added the value of each edge of the bounding box and then patched

it, which further enhanced the effect of post-processing. In (a) is original image,

(b) is the model inference result, (c) is with morphological image process without

padding edge, and (d) is with padding edge and fill the hole.

(a) Image (b) Prediction

(c) w/o pad edge (d) w/ pad edge

Figure 3.16: Comparison of Public_100.jpg

21

Chapter 4

Experimental Analysis and Conclusion

We set the number of training steps to 150. The learning rate curve is shown below. The

applied cosine decay and step decay are reduced by 0.75 every five steps, with warm-up

used for the initial six steps. The auto-enhancement probability is initially set to 0.4.

We calculate that approximately 30% of the expected data will execute the sub-policy in

each epoch. In the early stage, let the model learn a lot of diverse data, reduce the trigger

probability by increasing the number of steps, and reset the probability to zero in the last

five steps, focusing on standard data for final fine-tuning.

(a) Step decay (b) Cosine decay

Figure 4.1: Learning rate schedule

After trying many encoders, we concluded that using the Efficient-B3 has better ac-

curacy, and the loss value will also be decline steadily. In Table 4.1, we display our best

model Hyperparameter.

22

(a) Loss (b) Accuracy

Figure 4.2: Curve of loss and accuracy

Epoch 200
Batch size 48 (12 × 4)
Backbone Efficient-B3

Activation function Mish
Learning rate 0.001

Learning rate scheduler cosine decay
Warm up epoch 6

Table 4.1: Hyperparameter

The goal of backbone is to extract the features from the image. In this task, our

model uses UNet-based model and made a trial in a variety of backbone. We use the data

augmentation, learning scheduler for training and implement the different backbones.

For the activation function, we had tried the various function like LReLU, mish and

swish but not change much. According to the information of Figure in previous, we set

the threshold to eliminate the prediction mask which predict less than 250 pixels. Our

experiments result display as Table 4.2.

Model Backbone Activation Fold ID Validation accuracy Test accuracy
UNet EfficientNet-b3 mish 0 0.90557 0.89706
UNet EfficientNet-b3 mish 1 0.89629 0.89045
UNet EfficientNet-b3 mish 2 0.89717 0.89919
UNet EfficientNet-b3 mish 3 0.90199 0.89746
UNet EfficientNet-b3 leaky relu 0 0.89005 0.90104
UNet EfficientNet-b3 leaky relu 1 0.8777 0.90605
UNet EfficientNet-b3 leaky relu 2 0.89861 0.90235
UNet EfficientNet-b3 leaky relu 3 0.89216 0.90082

Table 4.2: Validation and test DSC

Conclusion. In this project, we implemented a UNet based model with different back-

bone. For the imbalance of foreground and background, we try to mitigate this problem

23

by combining DiceLoss and Focal Loss. Moreover, we use and auto-augmentation in-

crease the model robustness. For the post-processing, we design some strategy which

improve the accuracy powerfully. In Table 4.3, we show the final score and rank on the

leaderboard.

Team Name Public Private Final Rank (total teams)Dice Score Precision Recall Dice Score
TEAM_1137 0.919385 0.927361 0.911546 0.910871 16 (307)

Table 4.3: TBrain ranking

24

Bibliography

[1] JienengChen, Yongyi Lu, QihangYu, Xiangde Luo, EhsanAdeli, YanWang, Le Lu,

Alan Loddon Yuille, and Yuyin Zhou. Transunet: Transformers make strong en-

coders for medical image segmentation. ArXiv, abs/2102.04306, 2021.

[2] Steven Guan, Amir A. Khan, Siddhartha Sikdar, and Parag V. Chitnis. Fully dense

unet for 2-d sparse photoacoustic tomography artifact removal. IEEE Journal of

Biomedical and Health Informatics, 24(2):568–576, 2020.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, 2016.

[4] Fabian Isensee, Paul F. Jager, Simon A. A. Kohl, Jens Petersen, and Klaus Maier-

Hein. Automated design of deep learning methods for biomedical image segmen-

tation. arXiv: Computer Vision and Pattern Recognition, 2019.

[5] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss

for dense object detection. In 2017 IEEE International Conference on Computer

Vision (ICCV), pages 2999–3007, 2017.

[6] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2015.

[7] Marc Macenko, Marc Niethammer, J. S. Marron, David Borland, John T. Woosley,

Xiaojun Guan, Charles Schmitt, and Nancy E. Thomas. A method for normalizing

histology slides for quantitative analysis. 2009 IEEE International Symposium on

Biomedical Imaging: From Nano to Macro, pages 1107–1110, 2009.

[8] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-

works for biomedical image segmentation. In Nassir Navab, Joachim Hornegger,

William M. Wells, and Alejandro F. Frangi, editors, Medical Image Computing

and Computer-Assisted Intervention – MICCAI 2015, pages 234–241, Cham, 2015.

Springer International Publishing.

25

[9] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolu-

tional neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,

Proceedings of the 36th International Conference onMachine Learning, volume 97

of Proceedings of Machine Learning Research, pages 6105–6114. PMLR, 09–15

Jun 2019.

[10] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin

R. Hancock Richard C. Wilson and William A. P. Smith, editors, Proceedings of

the British Machine Vision Conference (BMVC), pages 87.1–87.12. BMVA Press,

September 2016.

26

Appendix A

Environment

Operating System

We develop the code on various OS, such as Windows10 and Linux (CentOS Linux re-

lease 7.8.2003, Red Hat release 6.4).

Language

For programming language, we implement our method by using MATLAB (r2021b) and

python (3.8.5).

Pre-processing MATLAB
Training Python

Post-processing MATLAB

Table A.1: Language

Third Party Libraries

We have used third party libraries only python, we have used the following third-party

libraries:

27

torch 1.11.0 +cu113
torchaudio 0.11.0+cu113
monai 0.8.1
timm 0.4.12
numpy 1.19.3

matplotlib 3.3.3
Pillow 8.1.0
PyYaml 6.0
yacs 0.1.8
tqdm 4.55.1

Table A.2: Version of libraries

Pretrained Model

We apply pretrained Efficient (B0 to B3) in timm package as our model backbone.

28

Appendix B

Cloud Calculation

We use WinSCP1 to manage data, monitor the data stored in the \home or \work folders,
and download the completed data to the local end. The container selects the Interactive

Container with the Image File pytorch22.02-py3:latest, and the container com-

puting type is c.2xsuper to provide 4GPU + 16CPU 360GB Memory. Here are the

following five-step we set up to make insurance that there is no wrong and waste while

applying cloud server.

1. Set up container: Set up a development container, install the required packages,

save it as a copy, and use the Custom Image File for the new container to complete

the internal settings (Subsequent containers directly apply a copy).

2. Set up monitoring interface: Use tmux2 to split the screen to record execution,

GPU usage, and background execution in a single window. (Because the pricing

starts after opening the container, it is necessary to ensure that every second of the

use period will not be wasted, so wewill also estimate the time to close the container

within 3 minutes after completing the training).

3. Prepare pre-written scripts: Execute pre-written scripts through bash first, and

use the background execution method to ensure that disconnection will not cause

unnecessary waste in the middle. (example below)

1 #!/bin/bash
2 nohup python3 STEP3_Train.py --config

B3-batch-adamw-step/Fold0.yaml > batchadamwfold0.txt &

4. Confirm correct execution: The inspection procedure is as follows.

(a) Tracking output information in the left half of thewindow. (tail -f filename)
1WinSCP (Windows Secure Copy) is a free and open-source SSH File Transfer Protocol (SFTP), File

Transfer Protocol (FTP), and secure copy protocol (SCP) client for Microsoft Windows.(from wiki)
2tmux is an open-source terminal multiplexer for Unix-like operating systems.(from wiki).

29

(b) The GPU usage in the upper right corner is correct.

(c) Enter the \home directory from WinSCP, and check whether the model pa-

rameter, record, and configuration information files are stored correctly in the

checkpoint folder.

(d) Observe the execution command in the real-timemonitoring system load status

(top). The assigned command appears in the lower right block.

Figure B.1: tmux interface

5. Collect training results:

(a) Track whether the output information stops outputting content.

(b) The GPU usage of the upper right window returns to 0.

(c) Make sure that the log file of the \home data is fully stored.

(d) Download the log file to your local computer.

(e) After the above confirmation, close the container and stop deducting the cal-

culation resource points.

After the standardized execution steps are determined, eight containers are executed

at the same time according to the process in Figure ?, and two groups of 4-fold cross-

validation are trained so that they can be handed over to themachine for executionwithout

fail.

30

Figure B.2: tmux view

B.1 Our Experience

1. Since it is the first time to use the TWCC online resources, one person is mainly

responsible for the overall operation, and the part of the shared memory is not used.

The advantage is that the data is integrated into and out of the same host account,

and it will be further used when there are more opportunities to use it in the future.

Try using multiple accounts to use computing resources and online integration.

2. Since it is impossible to monitor the GPU usage of containers real-time simultane-

ously in TWCC, we turn to tmux to simultaneously render on the screen.

Figure B.3: GPU monitor in TWCC website

The screen only shows the GPU time usage curve of a specific container, and we

are more concerned about the timely use of information so that we will choose the

previous tmux monitoring method.

3. Overall computing resource usage is approximately 34,578.

31

Appendix C

Contact Information

• Team

Team Name Private leaderboard score Private leaderboard rank
TEAM_1137 0.910871 16

• Team Member

Name Institution Phone Email
廖家緯 (Jia-Wei Liao) NYCU AM 0939580280 sam23582211@gmail.com
吳國棟 (Kuok-Tong Ng) NYCU AM 0910306618 l19so18h13k10@gmail.com
洪翊誠 (Yi-Cheng Hung) NYCU AM 0958618583 yicheng.sc10@nycu.edu.tw

• Advisor

Advisor Name Course (Course Number) Institution Email
Wen-Wei Lin - NYCU AM wwlin@g2.nctu.edu.tw
Yuh-Jye Lee Machine Learning (IAM5816) NYCU AM yuhjye@math.nctu.edu.tw

32

	1 Introduction
	1.1 Data Exploration
	1.2 Difficulties

	2 Related Work
	3 Proposed Approach
	3.1 Data Pre-processing
	3.1.1 Create image mask file
	3.1.2 Splitting training and validation set in 5-fold

	3.2 Data Transform and Augmentation
	3.2.1 H & E staining extract
	3.2.2 Auto-augmentation
	3.2.3 Random Add Noise
	3.2.4 Random FlipLR or FlipUD
	3.2.5 Padding

	3.3 Model Architecture
	3.3.1 Encoder and Bridge
	3.3.2 Decoder

	3.4 Loss Function
	3.4.1 Dice Loss
	3.4.2 Focal Loss
	3.4.3 Deep Supervised

	3.5 Optimization
	3.6 Learning Rate Scheduler
	3.7 Metrics
	3.8 Post Processing

	4 Experimental Analysis and Conclusion
	A Environment
	B Cloud Calculation
	B.1 Our Experience

	C Contact Information

