Group 6: Variational Models and Numerical Methods for Image Processing - Final Presentation

Members: Jia-Wei Liao (NTNU) Chun-Hsien Chen (NCCU) Chen-Yang Dai (NCTU) Advisor: Suh-Yuh Yang (NCU), TA: Chen-Yan Wei (NCU)

2020 NCTS Undergraduate Summer Research Program

August 28, 2020

A & Y B & Y B &

つくい

Outline

1 Introduction to image processing

- Image processing
- Preliminary knowledge of mathematics
- Algorithm: split Bregman iteration
- 2 Image denoising
	- ROF model
	- **o** Discretization
- ³ Image contrast enhancement
	- Model
	- **•** Discretization
- **4** Image stitching
	- Find features: SIFT algorithm
	- Match features: affine map and homography
	- Blending and contrast enhancement

 $\mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d$

 Ω

Introduction to image processing

Remark

- Let Ω be an open set in \mathbb{R}^2 and $u:\bar{\Omega}\to\mathbb{R}$
	- $u(x) \in [0, 255]$, $\forall x \in \Omega$
	- \bullet 0 \rightarrow black, 255 \rightarrow white
	- color image: RGB channels

 \leftarrow

Þ

Ξ \sim Э× つくへ

Total variation

Definition (Total variation of one variable function)

Let $\Omega = (a, b) \subseteq \mathbb{R}$ and $\mathcal{P}_n = \{a = x_0, x_1, \cdots, x_{n-1}, x_n = b\}$, be an arbitrary partition of Ω . The total variation of a real-valued function $u : \Omega \to \mathbb{R}$ is defined as the quantity,

$$
||u||_{TV(\Omega)} = \sup_{\mathcal{P}_n} \sum_{i=1}^n |u(x_i) - u(x_{i-1})|.
$$

Definition (Total variation of one variable function)

Let $\Omega = (a, b) \subseteq \mathbb{R}$ and $\mathcal{P}_n = \{a = x_0, x_1, \cdots, x_{n-1}, x_n = b\}$, be an arbitrary partition of $\overline{\Omega}$. The total variation of a real-valued function $u : \Omega \to \mathbb{R}$ is defined as the quantity,

$$
||u||_{TV(\Omega)} = \sup_{\mathcal{P}_n} \sum_{i=1}^n |u(x_i) - u(x_{i-1})|.
$$

Theorem

If u is a smooth function, then

$$
||u||_{TV(\Omega)} = \int_{\Omega} |u'(x)| dx.
$$

AP ▶ ◀ ヨ ▶ ◀ ヨ ▶

つくい

Definition (Total variation of two variable function)

Let Ω be an open set of \mathbb{R}^2 and $u\in L^1(\mathbb{R}).$ The total variation of u in Ω is defined as

$$
||u||_{TV(\Omega)} = \sup \left\{ \int_{\Omega} u \operatorname{div} \varphi \, dx : \varphi \in C_c^1(\Omega, \mathbb{R}^2), ||\varphi||_{L^{\infty}(\Omega)} \le 1 \right\},\,
$$

where $C^1_c\left(\Omega,\mathbb{R}^n\right)$ is the set of continuously differentiable vector functions of compact support contained in Ω , and $\|\cdot\|_{L^{\infty}(\Omega)}$ is the essential supremum norm.

Theorem

If u is a smooth function, then

$$
||u||_{TV(\Omega)} = \int_{\Omega} |\nabla u| dx.
$$

Group 6 (Advisor: Suh-Yuh Yang) Variational Methods for Image Processing $-6/68$

 QQ

∍

(国家) マ 国 家

Definition (Bounded variation)

If $||u||_{TV(\Omega)} < \infty$, then we say that u is a function of bounded variation. Moreover, the space of functions of bounded variation $BV(\Omega)$ is defined as $u\in L^1(\Omega)$ such that the total variation is finite, i.e.,

$$
BV(\Omega) = \left\{ u \in L^1(\Omega) : ||u||_{TV(\Omega)} < \infty \right\}.
$$

Remark

 $BV(\Omega)$ is a Banach space with the norm

 $||u||_{BV(\Omega)} = ||u||_{L^1(\Omega)} + ||u||_{TV(\Omega)}.$

AP ▶ ◀ ヨ ▶ ◀ ヨ ▶

つくい

Let $[a, b] \subseteq \mathbb{R}$. We consider the functional,

$$
E[y] = \int_{a}^{b} L(x, y, y') dx,
$$

where we assume that $y\in C^2([a,b])$ and $L\in C^2$ with respect to its arguments x, y and y' .

Euler-Lagrange equation (1-dimension)

A necessary condition for a local minimum y of E is

$$
\frac{\partial L}{\partial y} - \frac{d}{dx} \left(\frac{\partial L}{\partial y'} \right) = 0.
$$

in a month of the n

Let $\Omega \subseteq \mathbb{R}^2$ be an open set. We consider the functional,

$$
E[u] = \int_{\Omega} L(x, y, u, u_x, u_y) d(x, y),
$$

where we assume that $u\in C^2(\bar\Omega)$ and $L\in C^2$ with respect to its arguments x, y, u, u_x and u_y .

Euler-Lagrange equation (2-dimension)

A necessary condition for a local minimum u of E is

$$
\frac{\partial L}{\partial u} - \nabla \cdot \left(\frac{\partial L}{\partial u_x}, \frac{\partial L}{\partial u_y} \right) = 0.
$$

 QQ

Image denoising

Mathematics method of image processing

- **4** Fourier transform
- ² Heat-type equation

4日)

4 伊 ト

 $\mathbf{y} \rightarrow \mathbf{z} \Rightarrow \mathbf{y}$

÷

E

Image denoising

Mathematics method of image processing

- **4** Fourier transform
- ² Heat-type equation
- **3** Machine learning

 \overline{a}

E

Ξ \sim 医重变

Image denoising

Mathematics method of image processing

- **•** Fourier transform
- 2 Heat-type equation
- **3** Machine learning
- ⁴ Variational method (energy functional)

4 m k

 \equiv

E

曲 \mathbf{h} つくへ

Denoising (1-dimension)

minimizes
$$
\left(\int_{\Omega} |u'(x)| dx +
$$
 (some data fidelity term) $\right)$

4日)

 $\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$

目

ROF model

ROF model (Physica D, 1992)

Let $f:\bar{\Omega}\subseteq \mathbb{R}^2\to \mathbb{R}$ be a given noisy image. Rudin, Osher, and Fatemi proposed the model for image denoising:

$$
\min_{u \in BV(\Omega)} \left(\underbrace{\|u\|_{TV(\Omega)}}_{\text{regularizer}} + \frac{\lambda}{2} \underbrace{\int_\Omega (u-f)^2 d\boldsymbol{x}}_{\text{data fidelity}}\right),
$$

where $\lambda > 0$ is a tuning parameter which controls the regularization strengt.

化重新润滑脂

ROF model (Physica D, 1992)

Let $f:\bar{\Omega}\subseteq \mathbb{R}^2\to \mathbb{R}$ be a given noisy image. Rudin, Osher, and Fatemi proposed the model for image denoising:

$$
\min_{u \in BV(\Omega)} \biggl(\underbrace{\|u\|_{TV(\Omega)}}_{\text{regularizer}} + \frac{\lambda}{2} \underbrace{\int_\Omega (u-f)^2 d\boldsymbol{x}}_{\text{data fidelity}} \biggr),
$$

where $\lambda > 0$ is a tuning parameter which controls the regularization strengt.

Remark

- **1** A smaller value of λ will lead to a more regular solution.
- **2** The space of functions with bounded variation help remove spurious oscillations (noise) and preserve sharp signals (edges).
- **3** Th[e](#page-13-0) TV term allows the solution to have d[is](#page-15-0)[c](#page-12-0)[o](#page-13-0)[n](#page-14-0)[ti](#page-15-0)[nu](#page-0-0)[iti](#page-79-0)[es.](#page-0-0)

ROF Model:

$$
\min_{u \in BV(\Omega)} \left(\|u\|_{TV(\Omega)} + \frac{\lambda}{2} \int_{\Omega} (u - f)^2 dx \right)
$$

4 0 8

④ → → 重→ → 重→ → 重→

ROF Model:

$$
\min_{u \in BV(\Omega)} \left(\|u\|_{TV(\Omega)} + \frac{\lambda}{2} \int_{\Omega} (u - f)^2 dx \right)
$$

• Discretization:

$$
\min_{u} \left(\sum_{i,j} |(\nabla u)_{i,j}| + \frac{\lambda}{2} \sum_{i,j} (u_{i,j} - f_{i,j})^2 \right)
$$

4 17 18

K 御 と K 唐 と K 唐 と …

 \Rightarrow

ROF Model:

$$
\min_{u \in BV(\Omega)} \left(\|u\|_{TV(\Omega)} + \frac{\lambda}{2} \int_{\Omega} (u - f)^2 d\mathbf{x} \right)
$$

• Discretization:

$$
\min_{u} \left(\sum_{i,j} |(\nabla u)_{i,j}| + \frac{\lambda}{2} \sum_{i,j} (u_{i,j} - f_{i,j})^2 \right)
$$

Constraint:

$$
\min_{d,u} \left(\sum_{i,j} |d_{i,j}| + \frac{\lambda}{2} \sum_{i,j} (u_{i,j} - f_{i,j})^2 \right)
$$

subject to $d_{i,j} = \nabla u_{i,j}$

K ロ ▶ K @ ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Constraint:

$$
\min_{d,u} \left(\sum_{i,j} |d_{i,j}| + \frac{\lambda}{2} \sum_{i,j} (u_{i,j} - f_{i,j})^2 \right)
$$

subject to $d_{i,j} = \nabla u_{i,j}$

Bregman iteration:

$$
\min_{d,u} \left(\sum_{i,j} |d_{i,j}| + \frac{\lambda}{2} \sum_{i,j} (u_{i,j} - f_{i,j})^2 + \frac{\gamma}{2} \sum_{i,j} |d_{i,j} - \nabla u_{i,j} - b_{i,j}|^2 \right)
$$

押す スミメスミメーヨ

Bregman iteration

$$
\min_{d,u} \left(\sum_{i,j} |d_{i,j}| + \frac{\lambda}{2} \sum_{i,j} (u_{i,j} - f_{i,j})^2 + \frac{\gamma}{2} \sum_{i,j} |d_{i,j} - \nabla u_{i,j} - b_{i,j}|^2 \right)
$$

u-subproblem:

With d fixed, we solve

$$
u^{(k+1)} = \underset{u}{\arg\min} \bigg(\frac{\lambda}{2} \sum_{i,j} \left(u_{i,j} - f_{i,j} \right)^2 + \frac{\gamma}{2} \sum_{i,j} \left| d_{i,j}^{(k)} - \nabla u_{i,j} - b_{i,j}^{(k)} \right|^2 \bigg).
$$

Then consider the minimization problem

$$
\min_{u} \int_{\Omega} \left(\frac{\lambda}{2} (u - f)^2 + \frac{\gamma}{2} |d - \nabla u - b|^2 d\mathbf{x} \right).
$$

By Euler-Lagrange equation, we have

$$
\lambda(u - f) - \gamma \left[\nabla \cdot (\nabla u - d + b)\right] = 0,
$$

 2990

э

メイラメイラメー

u-subproblem (continue):

or equivalently,

$$
\lambda u - \gamma \Delta u = \lambda f - \gamma \nabla \cdot (d - b).
$$

Notice that:

$$
\Delta u_{i,j} = (u_{i,j-1} + u_{i,j+1} - 2u_{i,j}) + (u_{i-1,j} + u_{i+1,j} - 2u_{i,j})
$$

= $u_{i-1,j} + u_{i,j-1} + u_{i,j+1} + u_{i+1,j} - 4u_{i,j}$

So, we have

$$
(\lambda + 4\gamma)u_{i,j} = c_{i,j} + \gamma (u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1}),
$$

where $c_{i,j} = (\lambda f - \gamma \nabla \cdot (d - b))_{i,j}$.

モニーマ ヨ メモン マ 帰り

u-subproblem (continue):

$$
(\lambda + 4\gamma)u_{i,j} = c_{i,j} + \gamma (u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1}),
$$

which is a symmetric and strictly diagonally dominant linear system, by the Jacobi iterative method:

$$
u_{i,j}^{(k+1)} = \left[c_{i,j}^{(k)} + \gamma \left(u_{i-1,j}^{(k)} + u_{i+1,j}^{(k)} + u_{i,j-1}^{(k)} + u_{i,j+1}^{(k)}\right)\right] / (\lambda + 4\gamma).
$$

 2990

э

化重复 化重变

Bregman iteration

$$
\min_{d,u} \left(\sum_{i,j} |d_{i,j}| + \frac{\lambda}{2} \sum_{i,j} (u_{i,j} - f_{i,j})^2 + \frac{\gamma}{2} \sum_{i,j} |d_{i,j} - \nabla u_{i,j} - b_{i,j}|^2 \right)
$$

d-subproblem:

With u fixed, we solve

$$
d^{(k+1)} = \underset{d}{\arg\min} \left(\sum_{i,j} |d_{i,j}| + \frac{\gamma}{2} \sum_{i,j} \left| d_{i,j} - \nabla u_{i,j}^{(k+1)} - b_{i,j}^{(k)} \right|^2 \right).
$$

Notice that: Consider the simple 1-D case,

$$
\underset{x}{\arg\min} \left(\tau |x| + \frac{\rho}{2} (x - y)^2 \right) = \begin{cases} y - \tau/\rho, & y > \tau/\rho \\ 0, & |y| \le \tau/\rho \\ y + \tau/\rho, & y < -\tau/\rho \end{cases}
$$

何 ト ィヨ ト ィヨ ト

 299

э

d-subproblem (continue):

Notice that: Consider the simple 1-D case,

$$
\underset{x}{\arg\min}\left(\tau|x|+\frac{\rho}{2}(x-y)^2\right)=\frac{y}{|y|}\max\Bigl\{|y|-\tau/\rho,0\Bigr\}.
$$

Then we have

$$
d_{i,j}^{(k+1)} = \frac{\nabla u_{i,j}^{(k+1)} + b_{i,j}^{(k)}}{\left|\nabla u_{i,j}^{(k+1)} + b_{i,j}^{(k)}\right|} \max\left\{\left|\nabla u_{i,j}^{(k+1)} + b_{i,j}^{(k)}\right| - \frac{1}{\gamma}, 0\right\}.
$$

Updating b: $b_{i,j}^{(k+1)} = b^{(k)} + \nabla u^{(k+1)} - d^{(k+1)}$.

押 トメミ トメミ トーヨ

Initialize $u = f, b = 0, d = 0$ while $\frac{\|u-u_{prev}\|}{\|u_{prev}\|}>tolerance$ do for $n = 1$ to max step do Solve the u-subproblem Solve the d-subproblem $b \leftarrow b + \nabla u - d$ end for end while

イ押 トイヨ トイヨ トー

 \equiv

 QQ

Numerical experiments

ROF Model

$$
\min_{u \in BV(\Omega)} \left(\|u\|_{TV(\Omega)} + \frac{\lambda}{2} \int_{\Omega} (u - f)^2 d\mathbf{x} \right)
$$

Some Indices

Let \widetilde{u} be the clean image, \bar{u} be the mean intensity of the clean image, and u be the produced image.

• Mean square error: MSE =
$$
\frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} (\widetilde{u}_{i,j} - u_{i,j})^2
$$

2 Peak signal to noise ratio: $\text{PSNR} = 10 \log \left(\frac{255^2}{\text{MSE}/\text{s}} \right)$ $MSE(\tilde{u}, u)$

3 Signal to noise ratio: SNR = $10 \log \left(\frac{\mathsf{MSE}(\widetilde{u}, \bar{u})}{\mathsf{MSE}(\widetilde{\infty}, u)} \right)$ $MSE(\widetilde{u}, u)$ \setminus

つくい

 \setminus

Numerical experiments: grayscale image

Figure: Lenna

4 17 18

∢ 何 ▶ (ヨ ▶ (ヨ ▶

 $2Q$

э

Numerical experiments: color image

Figure: Drunken moon lake at NTU

 \sim \sim

Ξ

э

つくへ

 \longrightarrow \longrightarrow

∍ \sim э 299

∍

Histogram equalization (HE)

 \leftarrow

E

э \sim \mathbf{d} B $\,$

×.

Histogram equalization (HE)

Origin image Origin histogram

HE's image HE's histogram

(□) (包)

э

 $\left($ \sim E

ヨト

 299

Group 6 (Advisor: Suh-Yuh Yang) Variational Methods for Image Processing - 26/68

Histogram equalization (HE)

 $\langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \rangle$ and $\langle \rangle$ and $\langle \rangle$

E

 $\,$

 $2Q$

4日下 Group 6 (Advisor: Suh-Yuh Yang) Variational Methods for Image Processing - 27/68

Morel-Petro-Sbert model (IPOL 2014)

Let $f : \overline{\Omega} \to \mathbb{R}$ be a given grayscale image. The Morel-Petro-Sbert oposed the model for image contrast enhancementis:

$$
\min\left(\frac{1}{2}\underbrace{\int_{\Omega}|\nabla u-\nabla f|^{2}~dx}_{\text{data fidelity}}+\frac{\lambda}{2}\underbrace{\int_{\Omega}(u-\overline{u})^{2}~dx}_{\text{regularizer}}\right),
$$

where $\overline{u} = \frac{1}{\text{i} \overline{\Omega}}$ $\frac{1}{|\Omega|}\int_\Omega u\,dx$ is the mean value of u over Ω and $\lambda>0$ balances between detail preservation and variance reduction.

Remark

The data fidelity term preserves image details presented in f and the regularizer reduces the variance of u to eliminate the effect of nonuniform illumination.

イロト イ押ト イヨト イヨト

E

 QQ

The original model is simple but difficult to solve due to the \overline{u} term. So, we assuming that $\overline{u} \approx \overline{f}$.

 299

э

化重新润滑脂

The original model is simple but difficult to solve due to the \overline{u} term. So, we assuming that $\overline{u} \approx \overline{f}$.

Petro-Sbert-Morel model (MAA 2014)

Petro-Sbert-Morel further improved their model by using the L^1 norm to obtain sharper edges:

$$
\min_{u} \left(\int_{\Omega} |\nabla u - \nabla f| \, dx + \frac{\lambda}{2} \int_{\Omega} (u - \overline{f})^2 \, dx \right).
$$

Remark

Requiring the desired image u being close to a pixel-independent constant \overline{f} highly contradicts the requirement of ∇u being close to ∇f and restrains the parameter λ to be very small.

 \mathcal{A} and \mathcal{A} . The set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B}

つくい

Contrast enhancement

First, We define

$$
\Omega_d=\{\boldsymbol{x}\in\bar{\Omega}:f(\boldsymbol{x})\leq\bar{f}\},\,\,\text{and}\,\,\Omega_b=\{\boldsymbol{x}\in\bar{\Omega}:f(\boldsymbol{x})>\bar{f}\}
$$

as the dark part and the bright part of the image Ω . Second, define the adaptive functions

$$
g(\boldsymbol{x}) = \begin{cases} \alpha \bar{f}, & \boldsymbol{x} \in \Omega_d \\ f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega_b \end{cases}, \quad h(\boldsymbol{x}) = \begin{cases} \beta f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega_d \\ f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega_b \end{cases}.
$$

 QQ
Hsieh-Shao-Yang model (SIIMS 2020)

Hsieh-Shao-Yang proposed two adaptive functions q and h to replace \overline{f} and the original input image f

$$
\min_{u} \left(\int_{\Omega} |\nabla u - \nabla h| d\boldsymbol{x} + \frac{\lambda}{2} \int_{\Omega} (u - g)^2 d\boldsymbol{x} + \chi_{[0,255]}(u) \right),
$$

where q and h are devised respectively as

$$
g(\boldsymbol{x}) = \begin{cases} \alpha \bar{f}, & \boldsymbol{x} \in \Omega_d \\ f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega_b \end{cases}, \quad h(\boldsymbol{x}) = \begin{cases} \beta f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega_d \\ f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega_b \end{cases},
$$

with $\alpha > 0$ and $\beta > 1$ and the characteristic function is defined as

$$
\chi_{[0,255]}(u) = \begin{cases} 0, & \text{range}(u) \subseteq [0,255] \\ \infty, & \text{otherwise} \end{cases}.
$$

 QQ

Model:

$$
\min_u \biggl(\int_{\Omega} |\nabla u - \nabla h| d\bm{x} + \frac{\lambda}{2} \int_{\Omega} (u - g)^2 d\bm{x} + \chi_{[0,255]}(u) \biggr)
$$

メロメメ 御 メメ きょく モドー

目

Model:

$$
\min_{u} \left(\int_{\Omega} |\nabla u - \nabla h| d\boldsymbol{x} + \frac{\lambda}{2} \int_{\Omega} (u - g)^2 d\boldsymbol{x} + \chi_{[0,255]}(u) \right)
$$

• Discretization:

$$
\min_{u} \sum_{i,j} \left(|(\nabla u)_{i,j} - (\nabla h)_{i,j}| + \frac{\lambda}{2} (u_{i,j} - g_{i,j})^2 \right) + \chi_{[0,255]}(u)
$$

4 0 8 1

メ御 トメ 君 トメ 君 トー

目

Model:

$$
\min_u \biggl(\int_{\Omega} |\nabla u - \nabla h| d\bm{x} + \frac{\lambda}{2} \int_{\Omega} (u - g)^2 d\bm{x} + \chi_{[0,255]}(u) \biggr)
$$

o Discretization:

$$
\min_{u} \sum_{i,j} \left(|(\nabla u)_{i,j} - (\nabla h)_{i,j}| + \frac{\lambda}{2} (u_{i,j} - g_{i,j})^2 \right) + \chi_{[0,255]}(u)
$$

Constraint:

$$
\min_{u} \sum_{i,j} \left(|d_{i,j}| + \frac{\lambda}{2} (u_{i,j} - g_{i,j})^2 \right) + \chi_{[0,255]}(v)
$$

subject to $d = \nabla u - \nabla h$ and $v = u$

4 17 18

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \subset \mathcal{B} \rightarrow \mathcal{A} \subset \mathcal{B} \rightarrow \mathcal{B}$

• Discretization:

$$
\min_{u} \sum_{i,j} \left(|(\nabla u)_{i,j} - (\nabla h)_{i,j}| + \frac{\lambda}{2} (u_{i,j} - g_{i,j})^2 \right) + \chi_{[0,255]}(u)
$$

Bregman iteration:

$$
\min_{u,d,v} \sum_{i,j} \left(|d_{i,j}| + \frac{\lambda}{2} (u_{i,j} - g_{i,j})^2 + \frac{\gamma}{2} |d_{i,j} - (\nabla u)_{i,j} + (\nabla h)_{i,j} - b_{i,j}|^2 + \frac{\delta}{2} (v_{i,j} - u_{i,j} - c_{i,j})^2 \right) + \chi_{[0,255]}(v)
$$

4日)

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A}$

E

Split Bregman algorithm

Split Bregman algorithm

Initialize $u = h, v = h, d = 0, b = 0, c = 0$

while $\frac{\|u-u_{prev}\|}{\|u_{prev}\|}>tolerance$ do

for $n = 1$ to max step do

Solve the u-subproblem

Solve the d-subproblem

Solve the v-subproblem

$$
b \leftarrow b + \nabla u - \nabla h - d
$$

$$
c \leftarrow c + u - v
$$

end for end while

 QQ

Numerical experiments: grayscale image

Figure: Rose ($\lambda = 0.0005$)

 \overline{a}

 $2Q$

∍

性

Color RGB images

• The domain division for color RGB images denoted by (f_R, f_G, f_B) is conducted as follows. First, we define the maximum image as

$$
f_{\max}(\boldsymbol{x}) = \max\{f_R(\boldsymbol{x}), f_G(\boldsymbol{x}), f_B(\boldsymbol{x})\}, \,\forall \boldsymbol{x} \in \overline{\Omega}.
$$

• For example,

 2990

э

伊 ▶ イヨ ▶ イヨ ▶

Color RGB images

• The domain division for color RGB images denoted by (f_R, f_G, f_B) is conducted as follows. First, we define the maximum image as

$$
f_{\max}(\boldsymbol{x}) = \max\{f_R(\boldsymbol{x}), f_G(\boldsymbol{x}), f_B(\boldsymbol{x})\}, \,\forall \boldsymbol{x} \in \overline{\Omega}.
$$

• For example,

 2990

э

伊 ▶ イヨ ▶ イヨ ▶

Color RGB images

Let $\overline{f}_{\max}=\frac{1}{|\Omega|}$ $\frac{1}{|\Omega|}\int_\Omega f_\text{max}\,d\bm{x}$. Then we divide the image domain Ω into two parts

$$
\Omega_d = \{ \mathbf{x} \in \overline{\Omega} : f_{\text{max}}(\mathbf{x}) \leq \overline{f}_{\text{max}} \},
$$

$$
\Omega_b = \{ \mathbf{x} \in \overline{\Omega} : f_{\text{max}}(\mathbf{x}) > \overline{f}_{\text{max}} \}.
$$

つくへ

Э×

Numerical experiments: color image

Figure: House ($\lambda = 0.0005$)

4日)

×. \mathbb{R} ×. э \mathbf{h} э

×.

つくへ

Image stitching

- **1** Image alignment
	- Scale-invariant feature transform (SIFT): find features
	- Homography: match features

 \sim \sim

E

何 ▶ (三) (三)

Image stitching

- **1** Image alignment
	- Scale-invariant feature transform (SIFT): find features
	- Homography: match features
- **2** Image blending: linear blending

つくへ

SIFT: Gaussian blur

$$
G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}
$$

そロトー

★御き ★唐き ★唐

E

 $\,$

Convolution

Let original image be $I(x, y)$ and gaussian kernel $G(x, y, \sigma)$.

$$
L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)
$$

 \sim \sim

AD ▶ ◀ ヨ ▶ ◀ ヨ ▶

 299

э

SIFT: Gaussian pyramid

 \leftarrow \Box \rightarrow

∢母 \sim K 등 K K 등 K

E

SIFT: difference of Gaussian pyramid

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

E

SIFT: find extrema

K ロト K 御 ト K 君 ト K 君 ト

目

SIFT: rotation invariance

Direction

•
$$
m(x, y) = \sqrt{(L(x + 1, y) - L(x - 1, y))^2 + (L(x, y + 1) - L(x, y - 1))^2}
$$

\n• $\theta(x, y) = \tan^{-1} \left(\frac{L(x, y + 1) - L(x, y - 1)}{L(x + 1, y) - L(x - 1, y)} \right)$

4日)

重

する メモ メモ メモ

メロメメ 御 メメ きょく ミメー

活

Alignment as fitting

メロメメ 御 メメ きょく モドー

重

Homogeneous coordinates

• Converting to homogeneous image coordinates:

$$
\left[\begin{array}{c}x\\y\end{array}\right]\longrightarrow \left[\begin{array}{c}x\\y\\1\end{array}\right]
$$

Converting from homogeneous image coordinates:

つくい

Transformation: scale

$$
\left[\begin{array}{ccc} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right] = \left[\begin{array}{c} x' \\ y' \\ 1 \end{array}\right],
$$

E

∍

Ξ

 299

where $a, b > 0$.

 \leftarrow

Transformation: translation

$$
\left[\begin{array}{ccc} 1 & 0 & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right] = \left[\begin{array}{c} x' \\ y' \\ 1 \end{array}\right],
$$

E

∍

 299

where $e, f \in \mathbb{R}$.

Group 6 (Advisor: Suh-Yuh Yang) Variational Methods for Image Processing - 50/68

Transformation: rotation

$$
\begin{bmatrix}\n\cos \theta & \sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1\n\end{bmatrix}\n\begin{bmatrix}\nx \\
y \\
1\n\end{bmatrix} =\n\begin{bmatrix}\nx' \\
y' \\
1\n\end{bmatrix},
$$

E

∍

 299

where $\theta \in (0, 2\pi)$.

Group 6 (Advisor: Suh-Yuh Yang) Variational Methods for Image Processing - 51/68

Transformation: shear

$$
\begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}
$$

or

$$
\begin{bmatrix} 1 & 0 & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix},
$$

E

∍

 299

where $a, b > 0$.

 \leftarrow

Remark

Scale + Translation + Rotation + Shear = Affine transform

4 17 18

何 ▶ イヨ ▶ イヨ ▶ │

E

Remark

Scale $+$ Translation $+$ Rotation $+$ Shear $=$ Affine transform

Affine transformation

A 2D affine transformation is composed of a linear transformation by $\left[\begin{array}{cc} a & b \ c & d \end{array}\right]\in\mathbb{R}^{2\times 2}$ and a translation by a vector $\left[\begin{array}{c} e \\ f \end{array}\right]$ f $\Big] \in \mathbb{R}^2$ given as

$$
\left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] + \left[\begin{array}{c} e \\ f \end{array}\right]
$$

AD ▶ ◀ ヨ ▶ ◀ ヨ ▶ │

Homogeneous expression of 2D affine transformation

The homogeneous expression of the affine transformation is given as

$$
\left[\begin{array}{c} x' \\ y' \\ 1 \end{array}\right] = \left[\begin{array}{ccc} a & b & e \\ c & d & f \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right].
$$

Remark

The affine transformation has 6 degree of freedom.

化重复化重复

メロトメ部 トメミトメミト

重

Homogeneous expression of homography

The homogeneous expression of the homography is given as

$$
\lambda \left[\begin{array}{c} x' \\ y' \\ 1 \end{array}\right] = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right] \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right].
$$

 $\overline{4}$ $\overline{1}$

Þ

 2990

Ξ

Ξ

Ξ

Homogeneous expression of homography

The homogeneous expression of the homography is given as

$$
\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}.
$$

Remark

The homogeneous expression of the homography has 8 degree of freedom (9 parameters, but scale is arbitrary).

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$

Why do we need to do image blending?

 \sim \sim

 \equiv

化重复 化重变

Why do we need to do image blending?

つくへ

Image blending

Figure: Linear blending

メロトメ 御 トメ 君 トメ 君 トッ 君

Experiments: draw matches

Figure: Draw matches

 \leftarrow

E

化重新润滑脂
Experiments: homography

Figure: Warp perspective

 \overline{a}

 299

(国家) マ 国 $\,$ э

Experiments: blending

Figure: No blending versus linear blending

 299

э

Experiments: panorama

stacked image1~6

Panorama

Figure: Drunken moon lake at NTU

Group 6 (Advisor: Suh-Yuh Yang) Variational Methods for Image Processing - 63/68

and the first

4 伺 ▶

医单位 医单位

 299

Experiments: contrast enhancement

Figure: Drunken moon lake at NTU

Group 6 (Advisor: Suh-Yuh Yang) Variational Methods for Image Processing - 64/68

 \overline{a}

 299

ヨメ メヨメ

Experiments: contrast enhancement

Figure: Street tree at NTU

 $2Q$

化重变 化重

Codes on Github

1 Image denoising

[https://github.com/SeanChenTaipei/ImageProcessing/](https://github.com/SeanChenTaipei/ImageProcessing/blob/master/Adaptive-Model.ipynb) [blob/master/Adaptive-Model.ipynb](https://github.com/SeanChenTaipei/ImageProcessing/blob/master/Adaptive-Model.ipynb)

2 Image contrast enhancement [https://github.com/SeanChenTaipei/ImageProcessing/](https://github.com/SeanChenTaipei/ImageProcessing/blob/master/Contrast_Enhencement.ipynb) [blob/master/Contrast_Enhencement.ipynb](https://github.com/SeanChenTaipei/ImageProcessing/blob/master/Contrast_Enhencement.ipynb)

3 Image stitching [https://github.com/SeanChenTaipei/ImageProcessing/](https://github.com/SeanChenTaipei/ImageProcessing/blob/master/Image_Stitching.ipynb) [blob/master/Image_Stitching.ipynb](https://github.com/SeanChenTaipei/ImageProcessing/blob/master/Image_Stitching.ipynb)

 $\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B}$

 2990

References

- M. Brown and D. G. Lowe, Recognising panoramas, Proceedings Ninth IEEE International Conference on Computer Vision, Nice, France, 2003, pp. 1218-1225 vol.2, doi: 10.1109/ICCV.2003.1238630.
- L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), pp. 259-268.
- P.-W. Hsieh, P.-C. Shao, and S.-Y. Yang, Adaptive variational model for contrast enhancement of low-light images, SIAM Journal on Imaging Sciences, 13 (2020), pp. 1-28.
- Tom Goldstein and Stanley Osher,The Split Bregman Method for L1-Regularized Problems,SIAM J. Imaging Sci., 2(2), 323–343. (21 pages)
- S.-Y. Yang. Website: [http://www.math.ncu.edu.tw/](http://www.math.ncu.edu.tw/~syyang/research/2020NCTS_USRP.pdf) [~syyang/research/2020NCTS_USRP.pdf](http://www.math.ncu.edu.tw/~syyang/research/2020NCTS_USRP.pdf)

イロト イ母 トイヨ トイヨ トー

目

 299

Thanks for listening!

Group 6 (Advisor: Suh-Yuh Yang) Variational Methods for Image Processing - 68/68

4 17 18

K 御 ト K 君 ト K 君 ト …

 \equiv

 QQ