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Introduction to image processing

Remark

Let Ω be an open set in R2 and u : Ω̄→ R
u(x) ∈ [0, 255] ,∀x ∈ Ω̄

0→ black, 255 → white

color image: RGB channels
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Total variation

Definition (Total variation of one variable function)

Let Ω = (a, b) ⊆ R and Pn = {a = x0, x1, · · · , xn−1, xn = b}, be
an arbitrary partition of Ω̄. The total variation of a real-valued
function u : Ω→ R is defined as the quantity,

‖u‖TV (Ω) = sup
Pn

n∑
i=1

|u(xi)− u(xi−1)| .
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function u : Ω→ R is defined as the quantity,

‖u‖TV (Ω) = sup
Pn

n∑
i=1

|u(xi)− u(xi−1)| .

Theorem

If u is a smooth function, then

‖u‖TV (Ω) =

∫
Ω
|u′(x)|dx.
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Total variation

Definition (Total variation of two variable function)

Let Ω be an open set of R2 and u ∈ L1(R). The total variation of
u in Ω is defined as

‖u‖TV (Ω) = sup

{∫
Ω
u divϕdx : ϕ ∈ C1

c

(
Ω,R2

)
, ‖ϕ‖L∞(Ω) ≤ 1

}
,

where C1
c (Ω,Rn) is the set of continuously differentiable vector

functions of compact support contained in Ω, and ‖ · ‖L∞(Ω) is the
essential supremum norm.

Theorem

If u is a smooth function, then

‖u‖TV (Ω) =

∫
Ω
|∇u|dx.

Group 6 (Advisor: Suh-Yuh Yang) Variational Methods for Image Processing – 6/68



Bounded variation

Definition (Bounded variation)

If ‖u‖TV (Ω) <∞, then we say that u is a function of bounded
variation. Moreover, the space of functions of bounded variation
BV (Ω) is defined as u ∈ L1(Ω) such that the total variation is
finite, i.e.,

BV (Ω) =
{
u ∈ L1(Ω) : ‖u‖TV (Ω) <∞

}
.

Remark

BV (Ω) is a Banach space with the norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + ‖u‖TV (Ω).
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Euler-Lagrange

Let [a, b] ⊆ R. We consider the functional,

E[y] =

∫ b

a
L
(
x, y, y′

)
dx,

where we assume that y ∈ C2([a, b]) and L ∈ C2 with respect to
its arguments x, y and y′.

Euler-Lagrange equation (1-dimension)

A necessary condition for a local minimum y of E is

∂L

∂y
− d

dx

(
∂L

∂y′

)
= 0.
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Euler-Lagrange

Let Ω ⊆ R2 be an open set. We consider the functional,

E[u] =

∫
Ω
L (x, y, u, ux, uy) d(x, y),

where we assume that u ∈ C2(Ω̄) and L ∈ C2 with respect to its
arguments x, y, u, ux and uy.

Euler-Lagrange equation (2-dimension)

A necessary condition for a local minimum u of E is

∂L

∂u
−∇ ·

(
∂L

∂ux
,
∂L

∂uy

)
= 0.
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Image denoising

denoising−−−−−→

Mathematics method of image processing

1 Fourier transform

2 Heat-type equation

3 Machine learning

4 Variational method (energy functional)
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Signal denoising

Denoising (1-dimension)

minimizes

(∫
Ω

∣∣u′(x)
∣∣ dx+ (some data fidelity term)

)
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ROF model

ROF model (Physica D, 1992)

Let f : Ω̄ ⊆ R2 → R be a given noisy image. Rudin, Osher, and
Fatemi proposed the model for image denoising:

min
u∈BV (Ω)

(
‖u‖TV (Ω)︸ ︷︷ ︸
regularizer

+
λ

2

∫
Ω

(u− f)2dx︸ ︷︷ ︸
data fidelity

)
,

where λ > 0 is a tuning parameter which controls the
regularization strengt.

Remark

1 A smaller value of λ will lead to a more regular solution.

2 The space of functions with bounded variation help remove
spurious oscillations (noise) and preserve sharp signals (edges).

3 The TV term allows the solution to have discontinuities.
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Discretization of the ROF model

ROF Model:

min
u∈BV (Ω)

(
‖u‖TV (Ω) +

λ

2

∫
Ω

(u− f)2dx

)

Discretization:

min
u

(∑
i,j

|(∇u)i,j |+
λ

2

∑
i,j

(ui,j − fi,j)2

)

Constraint:

min
d,u

(∑
i,j

|di,j |+
λ

2

∑
i,j

(ui,j − fi,j)2

)
subject to di,j = ∇ui,j
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Discretization of the ROF model

Constraint:

min
d,u

(∑
i,j

|di,j |+
λ

2

∑
i,j

(ui,j − fi,j)2

)
subject to di,j = ∇ui,j

Bregman iteration:

min
d,u

(∑
i,j

|di,j |+
λ

2

∑
i,j

(ui,j − fi,j)2
+
γ

2

∑
i,j

|di,j −∇ui,j − bi,j |2
)
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Split Bregman algorithm

Bregman iteration

min
d,u

(∑
i,j

|di,j |+
λ

2

∑
i,j

(ui,j − fi,j)2
+
γ

2

∑
i,j

|di,j −∇ui,j − bi,j |2
)

u-subproblem:

With d fixed, we solve

u(k+1) = arg min
u

(
λ

2

∑
i,j

(ui,j − fi,j)2
+
γ

2

∑
i,j

∣∣∣d(k)
i,j −∇ui,j − b

(k)
i,j

∣∣∣2).
Then consider the minimization problem

min
u

∫
Ω

(
λ

2
(u− f)2 +

γ

2
|d−∇u− b|2dx

)
.

By Euler-Lagrange equation, we have

λ(u− f)− γ [∇ · (∇u− d+ b)] = 0,
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Split Bregman algorithm

u-subproblem (continue):

or equivalently,

λu− γ∆u = λf − γ∇ · (d− b).

Notice that:

∆ui,j = (ui,j−1 + ui,j+1 − 2ui,j) + (ui−1,j + ui+1,j − 2ui,j)

= ui−1,j + ui,j−1 + ui,j+1 + ui+1,j − 4ui,j

So, we have

(λ+ 4γ)ui,j = ci,j + γ (ui−1,j + ui+1,j + ui,j−1 + ui,j+1) ,

where ci,j = (λf − γ∇ · (d− b))i,j .
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Split Bregman algorithm

u-subproblem (continue):

(λ+ 4γ)ui,j = ci,j + γ (ui−1,j + ui+1,j + ui,j−1 + ui,j+1) ,

which is a symmetric and strictly diagonally dominant linear
system, by the Jacobi iterative method:

u
(k+1)
i,j =

[
c

(k)
i,j + γ

(
u

(k)
i−1,j + u

(k)
i+1,j + u

(k)
i,j−1 + u

(k)
i,j+1

)]
/(λ+ 4γ).
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Split Bregman algorithm

Bregman iteration

min
d,u

(∑
i,j

|di,j |+
λ

2

∑
i,j

(ui,j − fi,j)2
+
γ

2

∑
i,j

|di,j −∇ui,j − bi,j |2
)

d-subproblem:

With u fixed, we solve

d(k+1) = arg min
d

∑
i,j

|di,j |+
γ

2

∑
i,j

∣∣∣di,j −∇u(k+1)
i,j − b(k)

i,j

∣∣∣2
 .

Notice that: Consider the simple 1-D case,

arg min
x

(
τ |x|+ ρ

2
(x− y)2

)
=


y − τ/ρ, y > τ/ρ

0, |y| ≤ τ/ρ
y + τ/ρ, y < −τ/ρ

.
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Split Bregman algorithm

d-subproblem (continue):

Notice that: Consider the simple 1-D case,

arg min
x

(
τ |x|+ ρ

2
(x− y)2

)
=

y

|y|
max

{
|y| − τ/ρ, 0

}
.

Then we have

d
(k+1)
i,j =

∇u(k+1)
i,j + b

(k)
i,j∣∣∣∇u(k+1)

i,j + b
(k)
i,j

∣∣∣ max

{∣∣∣∇u(k+1)
i,j + b

(k)
i,j

∣∣∣− 1

γ
, 0

}
.

Updating b: b
(k+1)
i,j = b(k) +∇u(k+1) − d(k+1).
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Split Bregman algorithm

Split Bregman algorithm

Initialize u = f, b = 0, d = 0

while
‖u−uprev‖
‖uprev‖ > tolerance do

for n = 1 to maxstep do

Solve the u-subproblem

Solve the d-subproblem

b← b+∇u− d
end for

end while
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Numerical experiments

ROF Model

min
u∈BV (Ω)

(
‖u‖TV (Ω) +

λ

2

∫
Ω

(u− f)2dx

)

Some Indices

Let ũ be the clean image, ū be the mean intensity of the clean
image, and u be the produced image.

1 Mean square error: MSE =
1

nm

n∑
i=1

m∑
j=1

(ũi,j − ui,j)2

2 Peak signal to noise ratio: PSNR = 10 log

(
2552

MSE(ũ, u)

)
3 Signal to noise ratio: SNR = 10 log

(
MSE(ũ, ū)

MSE(ũ, u)

)
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Numerical experiments: grayscale image

Figure: Lenna
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Numerical experiments: color image

Figure: Drunken moon lake at NTU
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Image contrast enhancement

contrast enhancement−−−−−−−−−−−−−→
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Histogram equalization (HE)

Origin Histogram
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Histogram equalization (HE)

Origin image Origin histogram

HE’s image HE’s histogram
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Histogram equalization (HE)

Origin image HE’s image
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Contrast enhancement

Morel-Petro-Sbert model (IPOL 2014)

Let f : Ω→ R be a given grayscale image. The Morel-Petro-Sbert
oposed the model for image contrast enhancementis:

min

(
1

2

∫
Ω
|∇u−∇f |2 dx︸ ︷︷ ︸

data fidelity

+
λ

2

∫
Ω

(u− u)2 dx︸ ︷︷ ︸
regularizer

)
,

where u = 1
|Ω|
∫

Ω u dx is the mean value of u over Ω and λ > 0
balances between detail preservation and variance reduction.

Remark

The data fidelity term preserves image details presented in f and
the regularizer reduces the variance of u to eliminate the effect of
nonuniform illumination.
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Contrast enhancement

The original model is simple but difficult to solve due to the u
term. So, we assuming that u ≈ f .

Petro-Sbert-Morel model (MAA 2014)

Petro-Sbert-Morel further improved their model by using the L1

norm to obtain sharper edges:

min
u

(∫
Ω
|∇u−∇f | dx +

λ

2

∫
Ω

(u− f)2 dx

)
.

Remark

Requiring the desired image u being close to a pixel-independent
constant f highly contradicts the requirement of ∇u being close to
∇f and restrains the parameter λ to be very small.
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Contrast enhancement

First, We define

Ωd = {x ∈ Ω̄ : f(x) ≤ f̄}, and Ωb = {x ∈ Ω̄ : f(x) > f̄}

as the dark part and the bright part of the image Ω.
Second, define the adaptive functions

g(x) =

{
αf̄, x ∈ Ωd

f(x), x ∈ Ωb

, h(x) =

{
βf(x), x ∈ Ωd

f(x), x ∈ Ωb

.
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Contrast enhancement

Hsieh-Shao-Yang model (SIIMS 2020)

Hsieh-Shao-Yang proposed two adaptive functions g and h to
replace f and the original input image f

min
u

(∫
Ω
|∇u−∇h|dx +

λ

2

∫
Ω

(u− g)2dx + χ[0,255](u)

)
,

where g and h are devised respectively as

g(x) =

{
αf̄, x ∈ Ωd

f(x), x ∈ Ωb

, h(x) =

{
βf(x), x ∈ Ωd

f(x), x ∈ Ωb

,

with α > 0 and β > 1 and the characteristic function is defined as

χ[0,255](u) =

{
0, range(u) ⊆ [0, 255]

∞, otherwise
.
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Discretization of model

Model:

min
u

(∫
Ω
|∇u−∇h|dx +

λ

2

∫
Ω

(u− g)2dx + χ[0,255](u)

)

Discretization:

min
u

∑
i,j

(
|(∇u)i,j − (∇h)i,j |+

λ

2
(ui,j − gi,j)2

)
+ χ[0,255](u)

Constraint:

min
u

∑
i,j

(
|di,j |+

λ

2
(ui,j − gi,j)2

)
+ χ[0,255](v)

subject to d = ∇u−∇h and v = u
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Discretization of model

Discretization:

min
u

∑
i,j

(
|(∇u)i,j − (∇h)i,j |+

λ

2
(ui,j − gi,j)2

)
+ χ[0,255](u)

Bregman iteration:

min
u,d,v

∑
i,j

(
|di,j |+

λ

2
(ui,j − gi,j)2

+
γ

2
|di,j − (∇u)i,j + (∇h)i,j − bi,j |2

+
δ

2
(vi,j − ui,j − ci,j)2

)
+ χ[0,255](v)
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Split Bregman algorithm

Split Bregman algorithm

Initialize u = h, v = h, d = 0, b = 0, c = 0

while
‖u−uprev‖
‖uprev‖ > tolerance do

for n = 1 to maxstep do

Solve the u-subproblem

Solve the d-subproblem

Solve the v-subproblem

b← b+∇u−∇h− d

c← c+ u− v
end for

end while
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Numerical experiments: grayscale image

Figure: Rose (λ = 0.0005)
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Color RGB images

The domain division for color RGB images denoted by
(fR, fG, fB) is conducted as follows. First, we define the
maximum image as

fmax(x) = max{fR(x), fG(x), fB(x)}, ∀x ∈ Ω.

For example,

65 27 100

22 31 47

112 54 78

58 21 10

145 213 48

132 2 9

15 122 200

189 32 45

12 52 79

↓
65 122 200

189 213 48

132 54 79
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Color RGB images

Let fmax = 1
|Ω|
∫

Ω fmax dx. Then we divide the image domain Ω

into two parts

Ωd = {x ∈ Ω : fmax(x) ≤ fmax},
Ωb = {x ∈ Ω : fmax(x) > fmax}.

Group 6 (Advisor: Suh-Yuh Yang) Variational Methods for Image Processing – 37/68



Numerical experiments: color image

Figure: House (λ = 0.0005)
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Image stitching

1 Image alignment

Scale-invariant feature transform (SIFT): find features
Homography: match features

2 Image blending: linear blending
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SIFT: Gaussian blur

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2
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SIFT: Gaussian blur

Convolution

Let original image be I(x, y) and gaussian kernel G(x, y, σ).

L(x, y, σ) = G(x, y, σ) ∗ I(x, y)
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SIFT: Gaussian pyramid
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SIFT: difference of Gaussian pyramid
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SIFT: find extrema
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SIFT: rotation invariance

Direction

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1

(
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

)
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SIFT: descriptor
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Alignment as fitting
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Homogeneous coordinates

Converting to homogeneous image coordinates:[
x
y

]
−→

 x
y
1


Converting from homogeneous image coordinates: x

y
w

 , where w 6= 0 −→
[

x
w
y
w

]

Group 6 (Advisor: Suh-Yuh Yang) Variational Methods for Image Processing – 48/68



Transformation: scale

 a 0 0
0 b 0
0 0 1

 x
y
1

 =

 x′

y′

1

,

where a, b > 0.
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Transformation: translation

 1 0 e
0 1 f
0 0 1

 x
y
1

 =

 x′

y′

1

,

where e, f ∈ R.
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Transformation: rotation

 cos θ sin θ 0
sin θ cos θ 0

0 0 1

 x
y
1

 =

 x′

y′

1

,

where θ ∈ (0, 2π).
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Transformation: shear

 1 a 0
0 1 0
0 0 1

 x
y
1

 =

 x′

y′

1


or 1 0 0

b 1 0
0 0 1

 x
y
1

 =

 x′

y′

1

,

where a, b > 0.
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Affine transformation

Remark

Scale + Translation + Rotation + Shear = Affine transform
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Affine transformation

Remark

Scale + Translation + Rotation + Shear = Affine transform

Affine transformation

A 2D affine transformation is composed of a linear transformation

by

[
a b
c d

]
∈ R2×2 and a translation by a vector

[
e
f

]
∈ R2,

given as [
x′

y′

]
=

[
a b
c d

] [
x
y

]
+

[
e
f

]
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Affine transformation

Homogeneous expression of 2D affine transformation

The homogeneous expression of the affine transformation is given
as  x′

y′

1

 =

 a b e
c d f
0 0 1

 x
y
1

 .
Remark

The affine transformation has 6 degree of freedom.
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Homography

Homogeneous expression of homography

The homogeneous expression of the homography is given as

λ

 x′

y′

1

 =

 a b c
d e f
g h i

 x
y
1

 .
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Homography

Homogeneous expression of homography

The homogeneous expression of the homography is given as

λ

 x′

y′

1

 =

 a b c
d e f
g h i

 x
y
1

 .
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Homography

Homogeneous expression of homography

The homogeneous expression of the homography is given as

λ

 x′

y′

1

 =

 a b c
d e f
g h i

 x
y
1

 .
Remark

The homogeneous expression of the homography has 8 degree of
freedom (9 parameters, but scale is arbitrary).
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Image blending

Why do we need to do image blending?
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Image blending

Why do we need to do image blending?
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Image blending

Figure: Linear blending
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Experiments: draw matches

Figure: Draw matches
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Experiments: homography

Figure: Warp perspective
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Experiments: blending

Figure: No blending versus linear blending
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Experiments: panorama

Figure: Drunken moon lake at NTU
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Experiments: contrast enhancement

Figure: Drunken moon lake at NTU
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Experiments: contrast enhancement

Figure: Street tree at NTU
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Codes on Github

1 Image denoising
https://github.com/SeanChenTaipei/ImageProcessing/

blob/master/Adaptive-Model.ipynb

2 Image contrast enhancement
https://github.com/SeanChenTaipei/ImageProcessing/

blob/master/Contrast_Enhencement.ipynb

3 Image stitching
https://github.com/SeanChenTaipei/ImageProcessing/

blob/master/Image_Stitching.ipynb
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THE END

Thanks for listening!
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