

DiffQRCoder: Diffusion-based Aesthetic QR Code Generation with Scanning Robustness Guided Iterative Refinement

¹ National Taiwan University, ² Research Center for Information Technology Innovation, Academia Sinica Project page

Traditional Methods

Q-Art Code

Generative-based Method

DiffQRCoder (Ours)

Winter wonderland, fresh snowfall, evergreen trees, cozy log cabin, smoke rising from chimney, aurora borealis in night sky.

Cherry blossom festival, pink petals floating in the air, traditional lanterns, peaceful river, people in kimonos, sunny day.

QR Code 🕂 Prompt 🕂 Diffusion Model 🗪 Next-Generation Aesthetic QR Code

Motivation & Challenge

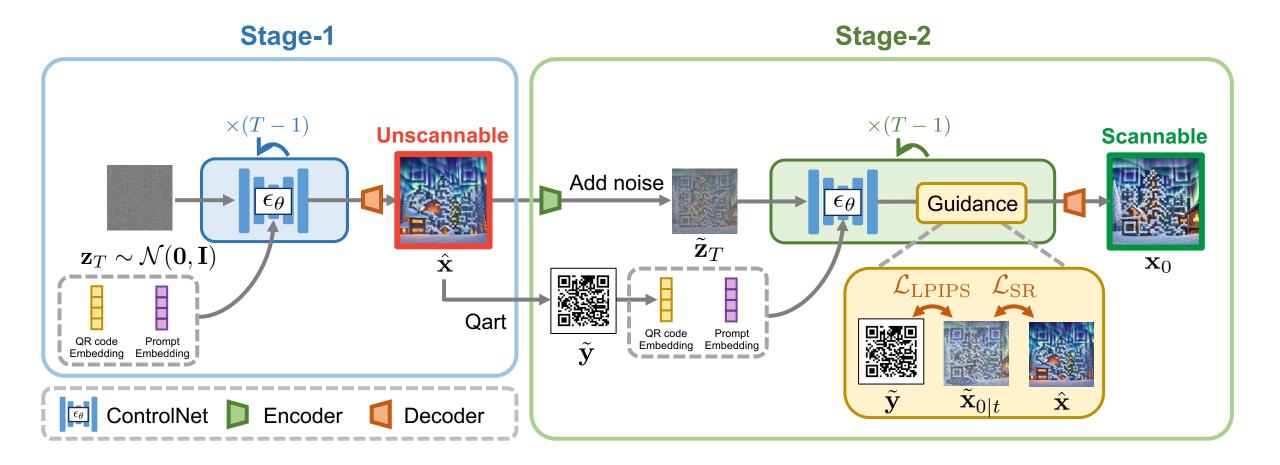
Most Diffusion-based aesthetic QR code generation struggle to balance scannability and aesthetics.

- QR Code AI Art and QR Diffusion produce better scanning robust QR codes but are visually less appealing.
- QRBTF could generate visually appealing QR codes, however, they lack scanning robustness.

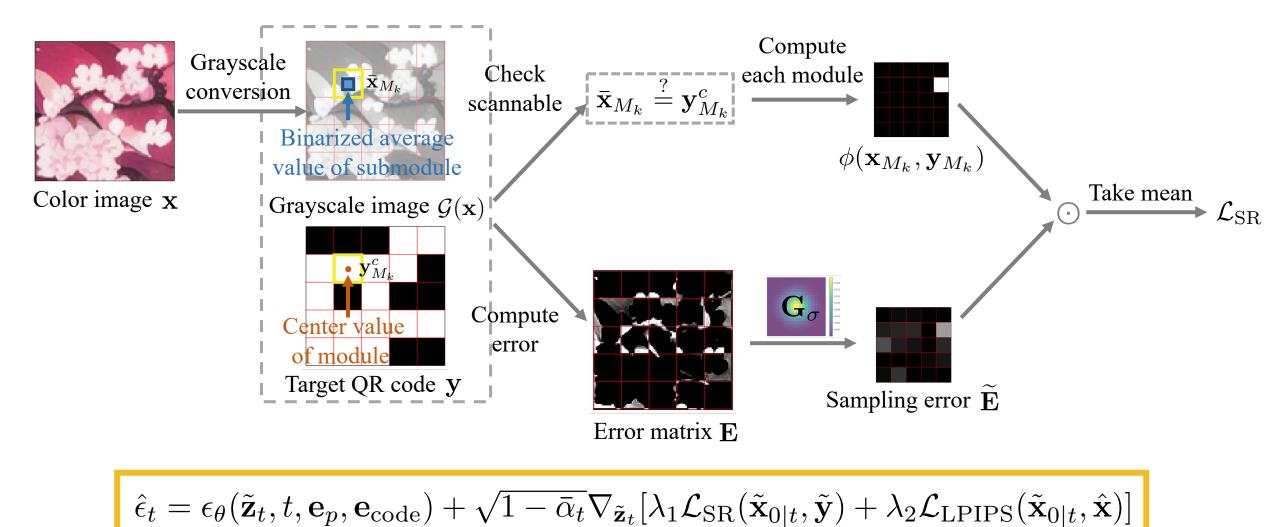
QR Code Al Art

QRBTF

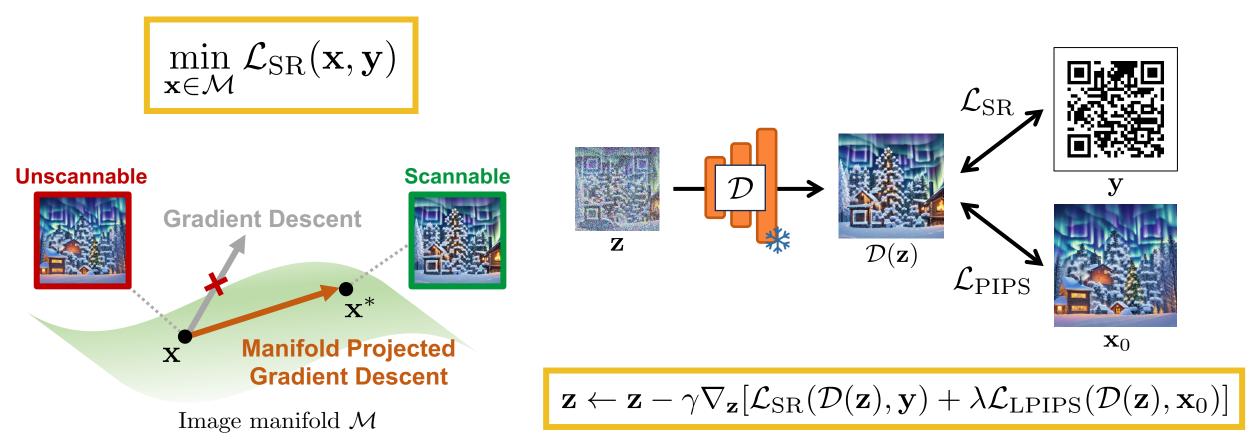
DiffQRCode (Ours)



Green: scannable, Red: unscannable

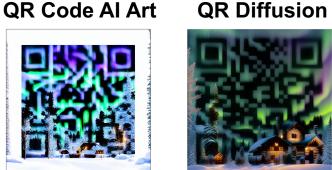

Contribution

- We propose a two-stage iterative refinement framework with Scanning Robust Perceptual Guidance (SRPG) to create scanning-robust, visually appealing QR codes without training.
- We develop Scanning Robust Manifold Projected Gradient Descent (SR-MPGD), enhancing the Scanning Success Rate through latent space optimization.
- Our pipeline improves SSR from 60% to nearly 100% compared to ControlNet-only methods, maintaining aesthetics as validated by user evaluations.


Two-stage Iterative Refinement Pipeline

Scanning Robust Perceptual Guidance (SRPG)

SR-MPGD Post Processing



Qualitative Comparisons

Prompt

Winter wonderland, fresh snowfall, evergreen trees, cozy log cabin, smoke rising from chimney, aurora borealis in night sky.

(a) Encoded message: Thanks reviews!

QRBTF

DiffQRCode (Ours)

Old European town square, cobblestone streets, café terraces, flowering balconies, gothic cathedral, bustling morning.

Forest clearing at night, fireflies, full moon, ancient oak tree, soft grass, mystical ambiance.

(b) Encoded message: I think, therefore I am!

(c) Encoded message: https://www.google.com.tw/

Quantitative Results (I)

- **SSR:** Utilize qr-verify to assess the scanning success rate
- **CLIP-aes.:** Utilize CLIP aesthetic predictor to quantify the aesthetic
- **CLIP-score:** Utilize CLIP to quantify the text-image alignment
- **Avg-rank:** Perform user subjective aesthetic preference study

Method	SSR ↑	CLIP-aes. ↑	CLIP-score ↑	Avg-rank↓
QR Code AI Art [13] QR Diffusion [15] QRBTF [18]	90% <u>96%</u> 56%	5.7003 5.5150 7.0156	0.2341 0.2780 0.3033	2.71 3.18 1.86
DiffQRCoder (Ours)	99%	<u>6.8233</u>	<u>0.2992</u>	<u>2.25</u>

Quantitative Results (II)

• Scannability of different **rotated angles**

Degree	0°	15°	30°	45°
SSR ↑	100%	100%	100%	97%

• Scannability of different **QR code error correction levels**

Level	L (7%)	M (15%)	Q (25%)	H (30%)
SSR ↑	96%	100%	100%	100%

Scannability of different encoded messages

Message	SSR ↑
I think, therefore I am.	97%
You are the apple of my eye.	100%
https://www.google.com.tw/	100%
https://www.wikipedia.org/	97%

Ablation Study

Stage	λ_1	λ_2	SR-MPGD	CLIP-aes. \uparrow	SSR ↑
Stage-1-only	-	-		7.0661	60%
Two-stage	400	0		6.7860	86%
Two-stage	500	0		6.7259	88%
Two-stage	600	0		6.7183	94%
Two-stage	1000	0		6.5667	93%
Two-stage	400	0	\checkmark	6.7567	98%
Two-stage	500	0	\checkmark	6.7097	100%
Two-stage	600	0	\checkmark	6.7002	99%
Two-stage	1000	0	\checkmark	6.5629	99%
Two-stage	500	2		6.8600	90%
Two-stage	500	3		6.8744	89%
Two-stage	500	5		6.8357	89%
Two-stage	500	10		6.8409	88%
Two-stage	500	2	\checkmark	6.8204	98%
Two-stage	500	3		6.8233	99%
Two-stage	500	5	\checkmark	6.7779	100%
Two-stage	500	10	\checkmark	6.8040	97%

Error Analysis

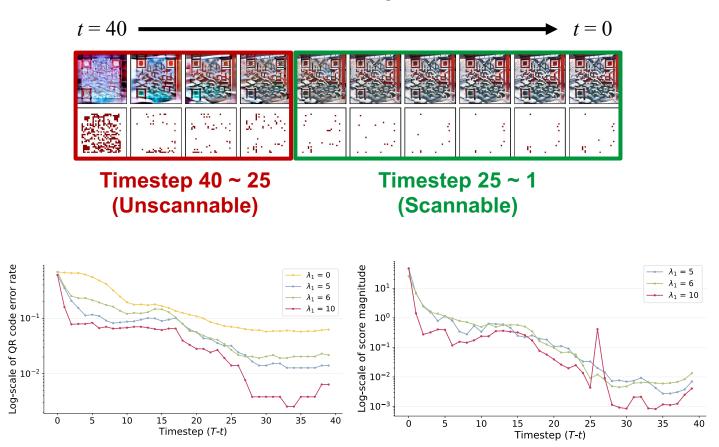


Table: Ablations for our proposed pipeline.

- We can add control to diffusion models via customized deterministic loss function without relying on pre-trained models or adapting additional modules.
- By breaking down the QR code scanning process and underlying mechanisms, we can design a differentiable loss function that serves as a gradient source for diffusion model guidance.
- Furthermore, leveraging VAE for latent optimization ensures improved visual quality while maintaining scannability.

Thanks for listening!

Project Page

